
MathWorks® Automotive Advisory
Board

Control Algorithm Modeling
Guidelines Using MATLAB®,
Simulink®, and Stateflow®

R2014a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MathWorks® Automotive Advisory Board Control Algorithm Modeling Guidelines Using
MATLAB®, Simulink®, and Stateflow®

© COPYRIGHT 2007–2014 by MathWorks® Automotive Advisory Board
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
March 2009 Online only New for Version 2.0 (Release 2009a)
September 2009 Online only Revised for Version 2.1 (Release 2009b)
March 2010 Online only Rereleased for Version 2.1 (Release 2010a)
September 2010 Online only Rereleased for Version 2.1 (Release 2010b)
April 2011 Online only Rereleased for Version 2.1 (Release 2011a)
September 2011 Online only Rereleased for Version 2.1 (Release 2011b)
March 2012 Online only Rereleased for Version 2.2 (Release 2012a)
September 2012 Online only Rereleased for Version 2.2 (Release 2012b)
March 2013 Online only Revised for Version 3.0 (Release 2013a)
September 2013 Online only Rereleased for Version 3.0 (Release 2013b)
March 2014 Online only Revised for Version 3.1 (Release 2014a)

Contents

Introduction

1
Presentation of Guidelines Hosted by MathWorks 1-2

Motivation . 1-3

Notes on Version 3.0 . 1-4

Guideline Template . 1-5
Guideline ID . 1-6
Guideline Title . 1-6
Priority . 1-7
Scope . 1-8
MATLAB Versions . 1-9
Prerequisites . 1-9
Description . 1-9
Rationale . 1-10
Last Change . 1-11
Model Advisor Check . 1-11

Document Usage . 1-12

Model Advisor Checks for MAAB Guidelines 1-13

Software Environment

2
General Guidelines . 2-2

v

Naming Conventions

3
General Guidelines . 3-2

Model Content . 3-9

Model Architecture

4
Simulink and Stateflow Partitioning 4-2

Subsystem Hierarchies . 4-14

J-MAAB Model Architecture Decomposition 4-26

Model Configuration Options

5
Model Configuration Options . 5-2

Simulink

6
Diagram Appearance . 6-2

Signals . 6-33

Block Usage . 6-42

vi Contents

Block Parameters . 6-66

Simulink Patterns . 6-72

Stateflow

7
Chart Appearance . 7-2

Stateflow Data and Operations . 7-20

Events . 7-42

Statechart Patterns . 7-47

Flowchart Patterns . 7-53

State Chart Architecture . 7-69

Enumerated Data

8
General Guidelines . 8-2

MATLAB Functions

9
MATLAB Function Appearance . 9-2

MATLAB Function Data and Operations 9-7

vii

MATLAB Function Patterns . 9-11

MATLAB Function Usage . 9-14

Recommendations for Automation Tools

A

Guideline Writing

B

Flowchart Reference

C

Background Information on Basic Blocks and
Signals

D
Basic Blocks . D-2

Signals and Signal Labels . D-3

MAAB Glossary

viii Contents

1

Introduction

• “Presentation of Guidelines Hosted by MathWorks” on page 1-2

• “Motivation” on page 1-3

• “Notes on Version 3.0” on page 1-4

• “Guideline Template” on page 1-5

• “Document Usage” on page 1-12

• “Model Advisor Checks for MAAB Guidelines” on page 1-13

1 Introduction

Presentation of Guidelines Hosted by MathWorks
This presentation of the MathWorks® Automotive Advisory Board (MAAB)
guidelines, Version 3.0, is based on the document, of the same title, authored
by the MAAB working group. In addition to the information included in the
original document, this presentation includes references to corresponding
Model Advisor MAAB checks that you can apply if you are licensed to use
Simulink® and Simulink Verification and Validation™ software.

1-2

Motivation

Motivation
The MathWorks Automotive Advisory Board (MAAB) guidelines are
important for project success and teamwork—both in-house and when
cooperating with partners or subcontractors. Observing the guidelines is one
key prerequisite to achieving:

• System integration without problems

• Well-defined interfaces

• Uniform appearance of models, code, and documentation

• Reusable models

• Readable models

• Problem-free exchange of models

• A simple, effective process

• Professional documentation

• Understandable presentations

• Fast software changes

• Cooperation with subcontractors

• Successful transitions of research or predevelopment projects to product
development

1-3

1 Introduction

Notes on Version 3.0
The current version of this document, 3.0, supports MATLAB® releases
R2007b through R2011b. Version 3.0 references rules from the NASA Orion
style guidelines (NASA - Orion GN&C: MATLAB and Simulink Standards).
Rules that are referenced from the NASA Orion guideline are noted with a
“See also” filed that provides the original rule number.

1-4

http://www.mathworks.com/aerospace-defense/standards/nasa.html

Guideline Template

Guideline Template

In this section...

“Guideline ID” on page 1-6

“Guideline Title” on page 1-6

“Priority” on page 1-7

“Scope” on page 1-8

“MATLAB Versions” on page 1-9

“Prerequisites” on page 1-9

“Description” on page 1-9

“Rationale” on page 1-10

“Last Change” on page 1-11

“Model Advisor Check” on page 1-11

Guideline descriptions are documented, using the following template.
Companies that want to create additional guidelines are encouraged to use
the same template.

ID: Title XX_nnnn: Title of the guideline (unique, short)

Priority Mandatory, Strongly recommended, or Recommended

Scope MAAB, NA-MAAB, J-MAAB, Specific Company (for
optional local company usage)

MATLAB
Versions

One of the following:
All
RX, RY, RZ
RX and earlier
RX and later
RX through RY

Prerequisites Links to guidelines, which are prerequisites to this
guideline (ID: Title)

1-5

1 Introduction

Description Description of the guideline (text, images)

Rationale Motivation for the guideline

Last
Change

Version number of last change

Model
Advisor
Check

Title of and link to the corresponding Model Advisor check,
if a check exists

Note The elements of this template are the minimum required items for
understanding and exchanging guidelines. You can add project or vendor
fields to this template as long as their meaning does not overlap with existing
fields. Such additions are encouraged if they help to integrate other guideline
templates and lead to a wider acceptance of the core template.

Guideline ID

• The guideline ID is built out of two lowercase letters (representing the
origin of the rule) and a four-digit number, separated by an underscore.

• Once a new guideline has an ID, the ID does not change.

• The ID is used for references to guidelines.

• The two letter prefixes na, jp, jc and eu are reserved for future MAAB
committee rules.

• Legacy prefixes, db, jm, hd, and ar, are reserved. The MAAB committee
will not use these prefixes for new rules.

• No new rules are to be written with these legacy prefixes.

Guideline Title

• The title should be a short, but unique description of the guidelines area of
application (for example, length of names)

• The title is used for the Prerequisites field and for custom checker tools.

• The title text should appear with a hyperlink that links to the guideline.

1-6

Guideline Template

Note The title should not be a redundant short description of the guidelines
content, because while the latter may change over time, the title should
remain stable.

Priority
Each guideline must be rated with one of the following priorities:

• Mandatory

• Strongly recommended

• Recommended

The priority describes the importance of the guideline and determines the
consequences of violations.

Mandatory Strongly
Recommended

Recommended

Definition

Guidelines that all
companies agree to that
are absolutely essential

Guidelines that all
companies conform to
100%

Guidelines that are
agreed upon to be
a good practice, but
legacy models preclude
a company from
conforming to the
guideline 100%

Models should conform
to these guidelines to
the greatest extent
possible; however,
100% compliance is not
required

Guidelines that are
recommended to
improve the appearance
of the model diagram,
but are not critical to
running the model

Guidelines where
conformance is
preferred, but not
required

Consequences: If the guideline is violated,

1-7

1 Introduction

Mandatory Strongly
Recommended

Recommended

Essential items are
missing

The model might not
work properly

The quality
and appearance
deteriorates

There may be an
adverse effect on
maintainability,
portability, and
reusability

The appearance does
not conform with other
projects

Waiver Policy: If the guideline is intentionally ignored,

The reasons must be
documented

Scope
The scope of a guideline may be set to one of the following:

Scope Description

MAAB (MathWorks Automotive
Advisory Board)

A group of automotivemanufacturers
and suppliers that work closely
together with MathWorks. MAAB
includes the subgroups J-MAAB and
NA-MAAB.

J-MAAB (Japan MAAB) A subgroup of MAAB that includes
automotive manufacturers and
suppliers in Japan and works
closely with MathWorks. Rules with
J-MAAB scope are local to Japan.

NA-MAAB (North American MAAB) A subgroup of MAAB that includes
automotive manufacturers and
suppliers in the United States and
Europe and works closely with
MathWorks. Rules with NA-MAAB
scope are local to the United States
and Europe.

1-8

Guideline Template

MATLAB Versions
The guidelines support all versions of the MATLAB and Simulink products. If
the rule applies to specific versions, the versions are identified in the MATLAB
versions field. The version information is in one of the following formats.

Format Definition

All All versions of MATLAB

RX, RY, or RZ A specific version of MATLAB

RX and earlier Versions of MATLAB until version RX

RX and later Versions of MATLAB from version RX to the current
version

RX through RY Versions of MATLAB between RX and RY

Prerequisites

• The Prerequisite field is for links to other guidelines that are prerequisites
for this guideline (logical conjunction).

• Use the guideline ID (for consistency) and the title (for readability) for
the links.

• The Prerequisites field should not contain any other text.

Description

• This field contains a detailed description of the guideline.

• If needed, add images and tables.

Note If formal notation (math, regular expression, syntax diagrams,
and exact numbers/limits) is available, use it to unambiguously describe
a guideline and specify an automated check. However, a human,
understandable, informal description must always be provided for daily
reference.

1-9

1 Introduction

Rationale
This field lists the reasons that apply for a given guideline. You can
recommend guidelines for one or more of the following reasons:

Rationale Description

Readability Easily understood algorithms
• Readable models

• Uniform appearance of models, code, and
documentation

• Clean interfaces

• Professional documentation

Workflow Effective development process and workflow
• Ease of maintenance

• Rapid model changes

• Reusable components

• Problem-free exchange of models

• Model portability

Simulation Efficient simulation and analysis
• Simulation speed

• Simulation memory

• Model instrumentation

Verification and
validation

Ability to verify and validate a model and generated
code with:
• Requirements traceability

• Testing

• Problem-free system integration

• Clean interfaces

Code generation Generation of code that is efficient and effective for
embedded systems
• Fast software changes

• Robustness of generated code

1-10

Guideline Template

Last Change
The Last change field contains the document version number.

Model Advisor Check
The Simulink Verification and Validation product includes Simulink Model
Advisor MAAB checks, which correspond to a subset of MAAB guidelines,
that you can select and run with the Simulink Model Advisor. In this
presentation of the MAAB guidelines, MathWorks includes a Model Advisor
check field in guideline descriptions, which contains the title of and a link
to the corresponding Model Advisor check, if a check exists. Although this
information is included, note that the MAAB working group takes a neutral
stance on recommendations for style guide checkers.

For a list of available Model Advisor checks for the MAAB guidelines, see
“Model Advisor Checks for MAAB Guidelines” on page 1-13. For information
on using the Model Advisor, see “Consult the Model Advisor” in the Simulink
documentation.

1-11

1 Introduction

Document Usage
• Name Conventions and Model Architecture provide basic guidelines that
apply to all types of models.

• Simulink and Stateflow® provide specific rules for those environments.

• Some guidelines are dependent on other guidelines and are explicitly listed
throughout the document.

• If users do not view the content of masked subsystems with a model, the
guidelines for readability are not applicable.

For information on automated checking of the guidelines, see Appendix A,
“Recommendations for Automation Tools”.

1-12

Model Advisor Checks for MAAB Guidelines

Model Advisor Checks for MAAB Guidelines
Simulink Verification and Validation provides Model Advisor MAAB checks
which correspond to a subset of MAAB guidelines. You can run the checks
using the Model Advisor.

The MAAB guidelines and corresponding Model Advisor checks are
summarized in the following table. Not all guidelines have Model Advisor
checks. For some of the guidelines without Model Advisor checks, it is
not possible to automate checking of the guideline. Guidelines without
a corresponding check are noted as not applicable. For information on
using the Model Advisor, see “Consult the Model Advisor” in the Simulink
documentation.

MAAB Guideline -
Version 3.0

Model Advisor check in By
Task > Modeling Standards for
MAAB folder

na_0026: Consistent
software environment

Not applicable

na_0027: Use of only
standard library blocks

Not applicable

ar_0001: Filenames Naming Conventions > “Check file
names”

ar_0002: Directory
names

Naming Conventions > “Check folder
names”

na_0035: Adoption of
naming conventions

Not applicable

jc_0201: Usable
characters for
Subsystem names

Naming Conventions > “Check
subsystem names”

jc_0211: Usable
characters for Inport
blocks and Outport
blocks

Naming Conventions > “Check port
block names”

1-13

1 Introduction

MAAB Guideline -
Version 3.0

Model Advisor check in By
Task > Modeling Standards for
MAAB folder

jc_0221: Usable
characters for signal
line names

Naming Conventions > “Check
character usage in signal labels”

na_0030: Usable
characters for Simulink
Bus names

Not applicable

jc_0231: Usable
characters for block
names

Naming Conventions > “Check
character usage in block names”

na_0014: Use of local
language in Simulink
and Stateflow

Not applicable

na_0006: Guidelines
for mixed use of
Simulink and Stateflow

Not applicable

na_0007: Guidelines
for use of Flow Charts,
Truth Tables and State
Machines

Not applicable

db_0143: Similar block
types on the model
levels

Simulink > “Check for mixing basic
blocks and subsystems”

db_0144: Use of
Subsystems

Not applicable

db_0040: Model
hierarchy

Not applicable

na_0037: Use of
single variable variant
conditionals

Not applicable

na_0020: Number of
inputs to variant
subsystems

Not applicable

1-14

Model Advisor Checks for MAAB Guidelines

MAAB Guideline -
Version 3.0

Model Advisor check in By
Task > Modeling Standards for
MAAB folder

na_0036: Default
variant

Not applicable

jc_0301: Controller
model

Not applicable

jc_0311: Top
layer/root level

Not applicable

jc_0321: Trigger layer Not applicable

jc_0331: Structure
layer

Not applicable

jc_0341: Data flow
layer

Not applicable

jc_0011: Optimization
parameters for Boolean
data types

Simulink > “Check Implement logic
signals as Boolean data (vs. double)”

jc_0021: Model
diagnostic settings

Model Configuration Options > “Check
model diagnostic parameters”

na_0004: Simulink
model appearance

Simulink > “Check for Simulink
diagrams using nonstandard display
attributes”

db_0043: Simulink font
and font size

Simulink > “Check font formatting”

db_0042: Port block in
Simulink models

Simulink > “Check positioning and
configuration of ports”

na_0005: Port block
name visibility in
Simulink models

Simulink > “Check visibility of block
port names”

jc_0081: Icon display
for Port block

Simulink > “Check display for port
blocks”

jm_0002: Block
resizing

Not applicable

1-15

1 Introduction

MAAB Guideline -
Version 3.0

Model Advisor check in By
Task > Modeling Standards for
MAAB folder

db_0142: Position of
block names

Simulink > “Check whether block names
appear below blocks”

jc_0061: Display of
block names

Simulink > “Check the display attributes
of block names”

db_0146: Triggered,
enabled, conditional
Subsystems

Simulink > “Check position of Trigger
and Enable blocks”

db_0140: Display of
basic block parameters

Simulink > “Check for nondefault block
attributes”

db_0032: Simulink
signal appearance

Not applicable

db_0141: Signal flow
in Simulink models

Not applicable

jc_0171: Maintaining
signal flow when using
Goto and From blocks

Not applicable

na_0032: Use of merge
blocks

Not applicable

jm_0010: Port block
names in Simulink
models

Simulink > “Check for matching port
and signal names”

jc_0281: Naming of
Trigger Port block and
Enable Port block

Simulink > “Check Trigger and Enable
block names”

na_0008: Display of
labels on signals

Simulink > “Check signal line labels”

na_0009: Entry versus
propagation of signal
labels

Simulink > “Check for propagated
signal labels”

1-16

Model Advisor Checks for MAAB Guidelines

MAAB Guideline -
Version 3.0

Model Advisor check in By
Task > Modeling Standards for
MAAB folder

db_0097: Position of
labels for signals and
busses

Not applicable

db_0081: Unconnected
signals, block inputs
and block outputs

Simulink > “Check for unconnected
ports and signal lines”

na_0003: Simple
logical expressions
in If Condition block

Not applicable

na_0002: Appropriate
implementation of
fundamental logical and
numerical operations

Not applicable

jm_0001: Prohibited
Simulink standard
blocks inside
controllers

• Simulink > “Check for blocks not
recommended for C/C++ production
code deployment”

• Simulink > “Check for prohibited
blocks in discrete controllers”

hd_0001: Prohibited
Simulink sinks

Simulink > “Check for prohibited sink
blocks”

na_0011: Scope of Goto
and From blocks

Simulink > “Check scope of From and
Goto blocks”

jc_0141: Use of the
Switch block

Simulink > “Check usage of Switch
blocks”

jc_0121: Use of the
Sum block

Not applicable

jc_0131: Use of
Relational Operator
block

Simulink > “Check usage of Relational
Operator blocks”

1-17

1 Introduction

MAAB Guideline -
Version 3.0

Model Advisor check in By
Task > Modeling Standards for
MAAB folder

jc_0161: Use of Data
Store Read/Write/Memory
blocks

Not applicable

db_0112: Indexing Simulink > “Check for indexing in
blocks”

na_0010: Grouping data
flows into signals

Simulink > “Check usage of buses and
Mux blocks”

db_0110: Tunable
parameters in basic
blocks

Simulink > “Check usage of tunable
parameters in blocks”

na_0012: Use of Switch
vs. If-Then-Else
Action Subsystem

Not applicable

db_0114: Simulink
patterns for
If-then-else-if
constructs

Not applicable

db_0115: Simulink
patterns for case
constructs

Not applicable

na_0028: Use of
If-Then-Else Action
Subsystem to Replace
Multiple Switches

Not applicable

db_0116: Simulink
patterns for logical
constructs with logical
blocks

Not applicable

db_0117: Simulink
patterns for vector
signals

Not applicable

1-18

Model Advisor Checks for MAAB Guidelines

MAAB Guideline -
Version 3.0

Model Advisor check in By
Task > Modeling Standards for
MAAB folder

jc_0351: Methods of
initialization

Not applicable

jc_0111: Direction of
Subsystem

Simulink > “Check orientation of
Subsystem blocks”

db_0123: Stateflow
port names

Stateflow > “Check for mismatches
between names of Stateflow ports and
associated signals”

db_0129: Stateflow
transition appearance

Not applicable

db_0137: States in
state machines

Sstateflow > “Check usage of exclusive
and default states in state machines”

db_0133: Use of
patterns for Flowcharts

Not applicable

db_0132: Transitions
in Flowcharts

Stateflow > “Check Transition
orientations in flowcharts”

jc_0501: Format of
entries in a State
block

Stateflow > “Check entry formatting in
State blocks in Stateflow charts”

jc_0511: Setting the
return value from a
graphical function

Stateflow > “Check return value
assignments of graphical functions in
Stateflow charts”

jc_0531: Placement of
the default transition

Stateflow > “Check default transition
placement in Stateflow charts”

jc_0521: Use of the
return value from
graphical functions

Stateflow > “Check usage of return
values from a graphical function in
Stateflow charts”

na_0001: Bitwise
Stateflow operators

Stateflow > “Check for bitwise
operations in Stateflow charts”

jc_0451: Use of unary
minus on unsigned
integers in Stateflow

Stateflow > “Check for unary minus
operations on unsigned integers in
Stateflow charts”

1-19

1 Introduction

MAAB Guideline -
Version 3.0

Model Advisor check in By
Task > Modeling Standards for
MAAB folder

na_0013: Comparison
operation in Stateflow

Stateflow > “Check for comparison
operations in Stateflow charts”

db_0122: Stateflow
and Simulink interface
signals and parameters

Stateflow > “Check for Strong Data
Typing with Simulink I/O”

db_0125: Scope of
internal signals
and local auxiliary
variables

Stateflow > “Check Stateflow data
objects with local scope”

jc_0481: Use of hard
equality comparisons
for floating point
numbers in Stateflow

Stateflow > “Check for equality
operations between floating-point
expressions in Stateflow charts”

jc_0491: Reuse of
variables within a
single Stateflow scope

Not applicable

jc_0541: Use of
tunable parameters
in Stateflow

Not applicable

db_0127: MATLAB
commands in Stateflow

Stateflow > “Check for MATLAB
expressions in Stateflow charts”

jm_0011: Pointers in
Stateflow

Stateflow > “Check for pointers in
Stateflow charts”

db_0126: Scope of
events

Not applicable

jm_0012: Event
broadcasts

Stateflow > “Check for event broadcasts
in Stateflow charts”

db_0150: State machine
patterns for conditions

Not applicable

1-20

Model Advisor Checks for MAAB Guidelines

MAAB Guideline -
Version 3.0

Model Advisor check in By
Task > Modeling Standards for
MAAB folder

db_0151: State machine
patterns for transition
actions

Stateflow > “Check transition actions in
Stateflow charts”

db_0148: Flowchart
patterns for conditions

Not applicable

db_0149: Flowchart
patterns for condition
actions

Not applicable

db_0134: Flowchart
patterns for If
constructs

Not applicable

db_0159: Flowchart
patterns for case
constructs

Not applicable

db_0135: Flowchart
patterns for loop
constructs

Not applicable

na_0038: Levels in
Stateflow charts

Not applicable

na_0039: Use of
Simulink in Stateflow
charts

Not applicable

na_0040: Number of
states per container

Not applicable

na_0041: Selection of
function type

Not applicable

na_0042: Location of
Simulink functions

Not applicable

na_0033: Enumerated
Types Usage

Not applicable

1-21

1 Introduction

MAAB Guideline -
Version 3.0

Model Advisor check in By
Task > Modeling Standards for
MAAB folder

na_0031: Definition
of default enumerated
value

Not applicable

na_0018: Number of
nested if/else and case
statement

MATLAB Functions > “Check MATLAB
Function block metrics”

na_0019: Restricted
Variable Names

Not applicable

na_0025: MATLAB
Function Header

Not applicable

na_0034: MATLAB
Function block
input/output settings

MATLAB Functions > “Check input and
output settings of MATLAB Function
blocks”

na_0024: Global
Variables

Naming Conventions > “Check MATLAB
code for global variables”

na_0022: Recommended
patterns for
Switch/Case statements

Not applicable

na_0016: Source lines
of MATLAB Functions

MATLAB Functions > “Check MATLAB
Function block metrics”

na_0017: Number of
called function levels

Not applicable

na_0021: Strings Not applicable

1-22

2

Software Environment

2 Software Environment

General Guidelines
• na_0026: Consistent software environment

• na_0027: Use of only standard library blocks

2-2

na_0026: Consistent software environment

ID: Title na_0026: Consistent software environment

Priority Recommended

Scope NA-MAAB

MATLAB®

Versions
See description

Prerequisites None

Description During software development, it is recommended that a consistent
software environment is used across the project. Software includes,
but is not limited, to:

• MATLAB

• Simulink

• C Compiler (for simulation)

• C Compiler (for target hardware)

Consistent software environment implies that the same version of the
software is used across the full project. The version number applies to
any patches or extensions to the software used by a group.

Rationale • Readability

• Code Generation

See Also • jh_0042: Required software

Last
Changed

V3.0

2-3

na_0027: Use of only standard library blocks

ID: Title na_0027: Use of only standard library blocks

Priority Recommended

Scope NA-MAAB

MATLAB®

Versions
All

Prerequisites None

Description Companies should specify a subset of Simulink blocks for use when
developing models. The block list can include custom block libraries
developed by the company or third parties. Models should be built only
from these blocks.

Non-compliant blocks can be used during development. If non-compliant
blocks are used, they should be marked either with a color, icon and / or
annotation. These blocks must be removed prior to use in production
code generation.

Rationale • Readability

• Verification and Validation

• Code Generation

• Simulation

See Also • hyl_0201: Use of standard library blocks only

Last
Changed

V3.0

2-4

3

Naming Conventions

• “General Guidelines” on page 3-2

• “Model Content” on page 3-9

3 Naming Conventions

General Guidelines
• ar_0001: Filenames

• ar_0002: Directory names

• na_0035: Adoption of naming conventions

3-2

ar_0001: Filenames

ID: Title ar_0001: Filenames

Priority Mandatory

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description A file name conforms to the following constraints:

Form

filename = name.extension

• name: no leading digits, no blanks

• extension: no blanks

Uniqueness

All file names within the parent project directory

Allowed Characters

name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

extension:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9

Underscores

name:

3-3

ar_0001: Filenames

• Can use underscores to separate parts

• Cannot have more than one consecutive underscore

• Cannot start with an underscore

• Cannot end with an underscore

extension:

Should not use underscores

Rationale • Readability

• Workflow

• Code Generation

• Simulation

Last
Changed

V3.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Naming
Conventions > “Check file names”

3-4

ar_0002: Directory names

Priority Mandatory

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description A directory name conforms to the following constraints:

Form
directory name = name

name: no leading digits, no blanks

Uniqueness

All directory names within the parent project directory

Allowed characters

name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

Underscores

name:

• Can use underscores to separate parts

• Cannot have more than one consecutive underscore

• Cannot start with an underscore

• Cannot end with an underscore

Rationale • Readability

• Workflow

3-5

ar_0002: Directory names

• Code Generation

• Simulation

Last
Changed

V1.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Naming
Conventions > “Check folder names”

3-6

na_0035: Adoption of naming conventions

ID: Title na_0035: Adoption of naming conventions

Priority Recommended

Scope NA-MAAB

MATLAB®

Versions
All

Prerequisites None

Description Adoption of a naming convention is recommended. A naming convention
provides guidance for naming blocks, signals, parameters and data
types. Naming conventions frequently cover issues such as:

• Compliance with the programing language and downstream tools

- Length

- Use of symbols

• Readability

- Use of underscores

- Use of capitalization

• Encoding information

- Use of “meaningful” names

- Standard abbreviations and acronyms

- Data type

- Engineering units

- Data ownership

- Memory type

Rationale • Readability

3-7

na_0035: Adoption of naming conventions

• Workflow

• Code Generation

• Simulation

Last
Changed

V3.0

3-8

na_0035: Adoption of naming conventions

Model Content
• jc_0201: Usable characters for Subsystem names

• jc_0211: Usable characters for Inport blocks and Outport
blocks

• jc_0221: Usable characters for signal line names

• na_0030: Usable characters for Simulink Bus names

• jc_0231: Usable characters for block names

• na_0014: Use of local language in Simulink and Stateflow

3-9

jc_0201: Usable characters for Subsystem names

ID: Title jc_0201: Usable characters for Subsystem

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description The names of all Subsystem blocks should conform to the following
constraints:

Form

name:

• Should not start with a number

• Should not include blank spaces

• Should not include carriage returns

Allowed Characters

name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

Underscores

name:

• Can use underscores to separate parts

• Cannot have more than one consecutive underscore

• Cannot start with an underscore

• Cannot end with an underscore

3-10

jc_0201: Usable characters for Subsystem names

Rationale • Readability

Last
Changed

V2.2

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Naming
Conventions > “Check subsystem names”

3-11

jc_0211: Usable characters for Inport blocks and
Outport blocks

ID: Title jc_0211: Usable characters for Inport blocks and Outport blocks

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description The names of all Inport blocks and Output blocks should conform to
the following constraints:

Form

name:

• Should not start with a number

• Should not include blank spaces

• Should not include carriage returns

Allowed Characters

name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

Underscores

name:

• Can use underscores to separate parts

• Cannot have more than one consecutive underscore

• Cannot start with an underscore

• Cannot end with an underscore

3-12

jc_0211: Usable characters for Inport blocks and
Outport blocks

Rationale • Readability

Last
Changed

V2.2

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Naming
Conventions > “Check port block names”

3-13

jc_0221: Usable characters for signal line names

ID: Title jc_0221: Usable characters for signal line names

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description Identifies named signals constraints

Form
name:

• Should not start with a number

• Should not include blank spaces

• Should not include any control characters

• Should not include carriage returns

Allowed Characters

name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

Underscores

name:

• Can use underscores to separate parts

• Cannot have more than one consecutive underscore

• Cannot start with an underscore

3-14

jc_0221: Usable characters for signal line names

• Cannot end with an underscore

Rationale • Readability

Last
Changed

V2.2

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Naming
Conventions > “Check character usage in signal labels”

3-15

na_0030: Usable characters for Simulink Bus names

ID: Title na_0030: Usable characters for Simulink Bus names

Priority Strongly recommended

Scope NA-MAAB

MATLAB®

Versions
All

Prerequisites None

Description All Simulink Bus names should conform to the following constraints:

Form
name:

• Should not start with a number

• Should not have blank spaces

• Carriage returns are not allowed

Allowed Characters

name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

Underscores

name:

• Can use underscores to separate parts

• Cannot have more than one consecutive underscore

• Cannot start with an underscore

• Cannot end with an underscore

3-16

na_0030: Usable characters for Simulink Bus names

Rationale • Readability

See Also • jh_0040: Usable characters for Simulink Bus Names

Last
Changed

V3.0

3-17

jc_0231: Usable characters for block names

ID: Title jc_0231: Usable characters for block names

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites jc_0201: Usable characters for Subsystem names

Description The names of all blocks should conform to the following constraints:

Form
name:

• Should not start with a number

• Should not include spaces at the beginning of a block name

• Should not use double byte characters

• Carriage returns are allowed

Allowed Characters

name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

Note This rule does not apply to Subsystem blocks.

Rationale • Readability

3-18

jc_0231: Usable characters for block names

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Naming
Conventions > “Check character usage in block names”

3-19

na_0014: Use of local language in Simulink and
Stateflow

ID: Title na_0014: Use of local language in Simulink and Stateflow

Priority Strongly recommended

Scope J-MAAB

MATLAB®

Versions
All

Prerequisites None

Description The local language should be used in descriptive fields only. Descriptive
fields are text entry points that do not affect code generation or
simulation. Examples of descriptive fields include the Description
field in the Block Properties dialog box.

Simulink Examples

• The Description field in the Block Properties dialog box

• Text annotation entered directly in the model

3-20

na_0014: Use of local language in Simulink and
Stateflow

Stateflow Examples

• The Description field of chart and state Properties

3-21

na_0014: Use of local language in Simulink and
Stateflow

• Annotation description added using Add Note

3-22

na_0014: Use of local language in Simulink and
Stateflow

Note It is possible that Simulink cannot open a model that includes
local language on different character encoding systems. Therefore, pay
attention when using local characters for exchanging models between
countries.

Rationale • Readability

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

3-23

na_0014: Use of local language in Simulink and
Stateflow

3-24

4

Model Architecture

• “Simulink and Stateflow Partitioning” on page 4-2

• “Subsystem Hierarchies” on page 4-14

• “J-MAAB Model Architecture Decomposition” on page 4-26

This document uses the term basic blocks to refer to blocks built into
the Simulink block libraries. “Basic Blocks” on page D-2 in Appendix D,
“Background Information on Basic Blocks and Signals” lists some examples of
basic blocks.

4 Model Architecture

Simulink and Stateflow Partitioning
• na_0006: Guidelines for mixed use of Simulink and Stateflow

• na_0007: Guidelines for use of Flow Charts, Truth Tables and
State Machines

4-2

na_0006: Guidelines for mixed use of Simulink and
Stateflow

ID: Title na_0006: Guidelines for mixed use of Simulink and Stateflow

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description The choice of whether to use Simulink or Stateflow to model a given
portion of the control algorithm functionality should be driven by the
nature of the behavior being modeled.

• If the function primarily involves complicated logical operations,
use Stateflow diagrams.

Use Stateflow diagrams to implement modal logic, where the
control function to be performed at the current time depends on a
combination of past and present logical conditions.

• If the function primarily involves numerical operations, use Simulink
features.

Specifics

• If the primary nature of the function is logical, but some simple
numerical calculations are done to support the logic, implement the
simple numerical functions using the Stateflow action language.

4-3

na_0006: Guidelines for mixed use of Simulink and
Stateflow

• If the primary nature of the function is numeric, but some simple
logical operations are done to support the arithmetic, implement the
simple logical functions with Simulink blocks.

4-4

na_0006: Guidelines for mixed use of Simulink and
Stateflow

• If the primary nature of the function is logical, and some complicated
numerical calculations must be done to support the logic, use a
Simulink subsystem to implement the numerical calculations. The
Stateflow software should invoke the execution of the subsystem,
using a function call.

4-5

na_0006: Guidelines for mixed use of Simulink and
Stateflow

4-6

na_0006: Guidelines for mixed use of Simulink and
Stateflow

• Use the Stateflow product to implement modal logic, where the
control function to be performed at the current time depends on a
combination of past and present logical conditions. (If there is a need
to store the result of a logical condition test in a Simulink model,
for example, by storing a flag, this is an indicator of the presence of
modal logic, which should be modeled with Stateflow software.)

4-7

na_0006: Guidelines for mixed use of Simulink and
Stateflow

Incorrect

4-8

na_0006: Guidelines for mixed use of Simulink and
Stateflow

Correct

• Use Simulink to implement numerical expressions containing
continuously-valued states, such as: difference equations, integrals,
derivatives, and filters.

4-9

na_0006: Guidelines for mixed use of Simulink and
Stateflow

Incorrect

Correct

Rationale • Readability

• Workflow

4-10

na_0006: Guidelines for mixed use of Simulink and
Stateflow

• Simulation

• Verification and Validation

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

4-11

na_0007: Guidelines for use of Flow Charts, Truth Tables
and State Machines

ID: Title na_0007: Guidelines for use of Flow Charts, Truth Tables and State
Machines

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites na_0006: Guidelines for mixed use of Simulink and
Stateflow

Description Within Stateflow, the choice of whether to use a flow chart or a state
chart to model a given portion of the control algorithm functionality
should be driven by the nature of the behavior being modeled.

• If the primary nature of the function segment is to calculate modes of
operation or discrete-valued states, use state charts. Some examples
are:

- Diagnostic models with pass, fail, abort, and conflict states

- Model that calculates different modes of operation for a control
algorithm

• If the primary nature of the function segment involves if-then-else
statements, use flowcharts or truth tables.

Specifics

If the primary nature of a function segment is to calculate modes or
states, but if-then-else statements are required, add a flow chart to a
state within the state chart. (See “Flowchart Patterns” on page 7-53.)

Rationale • Readability

• Workflow

4-12

na_0007: Guidelines for use of Flow Charts, Truth
Tables and State Machines

• Simulation

• Verification and Validation

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

4-13

na_0007: Guidelines for use of Flow Charts, Truth Tables
and State Machines

Subsystem Hierarchies
• db_0143: Similar block types on the model levels

• db_0144: Use of Subsystems

• db_0040: Model hierarchy

• na_0037: Use of single variable variant conditionals

• na_0020: Number of inputs to variant subsystems

• na_0036: Default variant

4-14

db_0143: Similar block types on the model levels

ID: Title db_0143: Similar block types on the model levels

Priority Strongly recommended

Scope NA-MAAB

MATLAB®

Versions
All

Prerequisites None

Description To allow partitioning of the model into discreet units, every level of a
model must be designed with building blocks of the same type (i.e. only
Subsystems or only “Basic Blocks”). The blocks listed in this guideline
are used for signal routing. You can place them at any level of the model.

Blocks that You Can Place at any Model Level

Block Example

Action port1

Bus Creator

Bus Selector

Case

4-15

db_0143: Similar block types on the model levels

Blocks that You Can Place at any Model Level (Continued)

Block Example

Data Store Memory

Data Type Conversion

Demux

Enable2

From

Function-Call
Generator

Function-Call Split

Goto

4-16

db_0143: Similar block types on the model levels

Blocks that You Can Place at any Model Level (Continued)

Block Example

Ground

If

Inport

Merge

Mux

Outport

Rate Transition

Selector

Terminator

4-17

db_0143: Similar block types on the model levels

Blocks that You Can Place at any Model Level (Continued)

Block Example

Trigger3

Unit Delay

1Action ports are not allowed at the root level of a model.
2Starting in R2011b, the Enable block is allowed at the root level of
the model.
3Starting in R2009a, the Trigger block is allowed at the root level of
the model.

Note If the Trigger or Enable blocks are placed at the root level of
the model, then the model will not simulate in a standalone mode.
The model must be referenced using the Model block.

Rationale • Readability

• Workflow

• Verification and Validation

Last
Changed

V2.2

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for mixing basic blocks and subsystems”

4-18

db_0144: Use of Subsystems

ID: Title db_0144: Use of Subsystems

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description Blocks in a Simulink diagram should be grouped together into
subsystems based on functional decomposition of the algorithm, or
portion thereof, represented in the diagram.

Grouping blocks into subsystems primarily for the purpose of saving
space in the diagram should be avoided. Each subsystem in the diagram
should represent a unit of functionality required to accomplish the
purpose of the model or submodel. Blocks can also be grouped together
based on behavioral variants or timing.

If creation of a subsystem is required for readability issues, then a
virtual subsystem should be used.

Rationale • Readability

• Workflow

• Verification and Validation

• Code Generation

Last
Changed

V2.2

Model
Advisor
Check

Not applicable

4-19

db_0040: Model hierarchy

ID: Title db_0040: Model hierarchy

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description The model hierarchy should correspond to the functional structure of
the control system.

Rationale • Readability

• Workflow

• Verification and Validation

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

4-20

na_0037: Use of single variable variant conditionals

ID: Title na_0037: Use of single variable variant conditionals

Priority Recommended

Scope NA-MAAB

MATLAB®

Versions
All

Prerequisites None

Description Variant conditional expressions should be composed using either a
single variable with compound conditions or multiple variables with a
single condition. The default variant is an exception to the second rule.

Correct: Multiple variables (INLINE / FUNCTION with single condition
per line

Correct: Single variable compound conditions

Incorrect: Multiple variables, compound conditions

4-21

na_0037: Use of single variable variant conditionals

Note Use of enumerated variables is preferred in the Condition expressions.
To improve the readability of the screenshots used in the examples,
numerical values were used.

Rationale • Readability

• Code Generation

• Simulation

See Also • na_0036: Default variant

Last
Changed

V3.0

4-22

na_0020: Number of inputs to variant subsystems

ID: Title na_0020: Number of inputs to variant subsystems

Priority Recommended

Scope NA-MAAB

MATLAB®

Versions
All

Prerequisites None

Description Simulink requires variant subsystems to have the same number of
inputs. However, the variant subsystem might not use all of the inputs.
In these instances, terminate the unused inputs with the Terminator
block.

Rationale • Readability

• Code Generation

• Simulation

Last
Changed

V3.0

4-23

na_0036: Default variant

ID: Title na_0036: Default variant

Priority Recommended

Scope NA-MAAB

MATLAB®

Versions
All

Prerequisites na_0037: Use of single variable variant conditionals

Description All Variant subsystems and models should be configured so that one
subsystem is always selected. This can be achieved by doing one of
the following:

• Using a default variant.

• Defining conditions that exhaustively cover all possible values of the
conditional variables. For example, defining conditions for true and
false values of a Boolean.

Correct

Correct: Assumes FUNC and INLINE are Boolean

Incorrect: No active subsystem ifFUNC not equal to 1 or 2.

4-24

na_0036: Default variant

Rationale • Readability

• Code Generation

• Simulation

Last
Changed

V3.0

4-25

na_0036: Default variant

J-MAAB Model Architecture Decomposition
• jc_0301: Controller model

• jc_0311: Top layer/root level

• jc_0321: Trigger layer

• jc_0331: Structure layer

• jc_0341: Data flow layer

4-26

jc_0301: Controller model

ID: Title jc_0301: Controller model

Priority Mandatory

Scope J-MAAB

MATLAB®

Versions
All

Prerequisites None

Description Control models are organized using the following hierarchical structure.
Details on each layer are provided in corresponding rules.

• Top layer (root level), jc_0311: Top layer/root level

• Trigger layer, jc_0321: Trigger layer

• Structure layer. jc_0331: Structure layer

• Data flow layer, jc_0341: Data flow layer

Use of the Trigger level is optional. In the following figure, Type A
shows the use of a trigger level while Type B shows a model without
a trigger level.

4-27

jc_0301: Controller model

Controller Model

Rationale Workflow

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

4-28

jc_0311: Top layer/root level

ID: Title jc_0311: Top layer/root level

Priority Mandatory

Scope J-MAAB

MATLAB®

Versions
All

Prerequisites None

Description Items to describe in a top layer are as follows:

• Overview: Explanation of model feature overview

• Input: Input variables

• Output: Output variables

Top Layer Example

Rationale Workflow

Last
Changed

V2.0

4-29

jc_0311: Top layer/root level

Model
Advisor
Check

Not applicable

4-30

jc_0321: Trigger layer

ID: Title jc_0321: Trigger layer

Priority Mandatory

Scope J-MAAB

MATLAB®

Versions
All

Prerequisites None

Description A trigger layer indicates the processing timing by using Triggered
Subsystem or Function-Call Subsystem blocks.

• The blocks should set Priority, if needed.

• The priority value must be displayed as a block annotation. You
should be able to understand the priority-based order without having
to open the block.

Trigger Layer Example

Rationale • Readability

• Workflow

• Code Generation

4-31

jc_0321: Trigger layer

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

4-32

jc_0331: Structure layer

ID: Title jc_0331: Structure layer

Priority Mandatory

Scope J-MAAB

MATLAB®

Versions
All

Prerequisites None

Description • Describe a structure layer like the following structure layer example.

- In the case of Type B, specify sample time at an Inport block or a
Subsystem block to define task time of the subsystem.

- In the case of Type B, use a block annotation at an Inport block
or a Subsystem block and display sample time to clarify task time
of the subsystem.

• A subsystem of a structure layer should be an atomic subsystem.

Structure Layer Example (Type A: No Description of Processing Timing)

4-33

jc_0331: Structure layer

Structure Layer Example (Type B: Description of Processing Timing)

Rationale • Readability

• Workflow

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

4-34

jc_0341: Data flow layer

ID: Title jc_0341: Data flow layer

Priority Mandatory

Scope J-MAAB

MATLAB®

Versions
All

Prerequisites None

Description Describe a data flow layer as in the following example. In the case of
Type A, use a block annotation at an Inport block and display its sample
time to clarify execution timing of the signal.

Data Flow Layer Example

Rationale Workflow

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

4-35

jc_0341: Data flow layer

4-36

5

Model Configuration
Options

5 Model Configuration Options

Model Configuration Options
• jc_0011: Optimization parameters for Boolean data types

• jc_0021: Model diagnostic settings

5-2

jc_0011: Optimization parameters for Boolean data
types

ID: Title jc_0011: Optimization parameters for Boolean data types

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites na_0002: Appropriate implementation of fundamental logical
and numerical operations

Description The optimization option for Boolean data types must be enabled (on).

In the Configuration Parameters dialog box, on the Optimization
pane, under Simulation and code generation, select Implement
logic signals as Boolean data (vs. double).

Rationale • Workflow

• Code Generation

Last
Changed

V2.2

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
Implement logic signals as Boolean data (vs. double)”

5-3

jc_0021: Model diagnostic settings

ID: Title jc_0021: Model diagnostic settings

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description The following diagnostics must be enabled. An enabled diagnostic
is set to warning or error. Setting the diagnostic option to none is
not permitted. Diagnostics that are not listed may be set to any value
(none, warning, or error).

Solver Diagnostics

• Algebraic loop

• Minimize algebraic loop

Sample Time Diagnostics

• Multitask rate transition

Data Validity Diagnostics

• Inf or NaN block output

• Duplicate data store names

Connectivity

• Unconnected block input ports

• Unconnected block output ports

• Unconnected line

• Unspecified bus object at root Outport block

5-4

jc_0021: Model diagnostic settings

• Mux blocks used to create bus signals

• Invalid function-call connection

• Element name mismatch

Rationale • Workflow

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Model Configuration
Options > “Check model diagnostic parameters”

5-5

jc_0021: Model diagnostic settings

5-6

6

Simulink

• “Diagram Appearance” on page 6-2

• “Signals” on page 6-33

• “Block Usage” on page 6-42

• “Block Parameters” on page 6-66

• “Simulink Patterns” on page 6-72

6 Simulink®

Diagram Appearance
• na_0004: Simulink model appearance

• db_0043: Simulink font and font size

• db_0042: Port block in Simulink models

• na_0005: Port block name visibility in Simulink models

• jc_0081: Icon display for Port block

• jm_0002: Block resizing

• db_0142: Position of block names

• jc_0061: Display of block names

• db_0146: Triggered, enabled, conditional Subsystems

• db_0140: Display of basic block parameters

• db_0032: Simulink signal appearance

• db_0141: Signal flow in Simulink models

• jc_0171: Maintaining signal flow when using Goto and From
blocks

• na_0032: Use of merge blocks

• jm_0010: Port block names in Simulink models

• jc_0281: Naming of Trigger Port block and Enable Port block

6-2

na_0004: Simulink model appearance

ID: Title na_0004: Simulink model appearance

Priority Recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description The model appearance settings should conform to the following
guidelines when the model is released. You can change the settings
during the development process.

View Options Setting

Model Browser Unchecked

Screen color White

Status Bar Checked

Toolbar Checked

Zoom factor Normal (100%)

Block Display Options Setting

Background Color White

Foreground Color Black

Execution Context Indicator Unchecked

Library Link Display None

Linearization Indicators Checked

Model/Block I/O Mismatch Unchecked

Model Block Version Unchecked

6-3

na_0004: Simulink model appearance

Block Display Options Setting

Sample Time Colors Unchecked

Sorted Order Unchecked

Signal Display Options Setting

Port Data Types Unchecked

Signal Dimensions Unchecked

Storage Class Unchecked

Test point Indicators Checked

Viewer Indicators Checked

Wide Nonscalar Lines Checked

Rationale • Readability

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for Simulink diagrams using nonstandard display attributes”

6-4

db_0043: Simulink font and font size

ID: Title db_0043: Simulink font and font size

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description All text elements (block names, block annotations, and signal labels)
except free text annotations within a model, must have the same font
style and font size. Select font style and font size for legibility.

Note The selected font should be portable (for example, the Simulink
and Stateflow default font) or convertible between platforms (for
example, Arial or Helvetica 12pt).

Rationale • Readability

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
font formatting”

6-5

db_0042: Port block in Simulink models

ID: Title db_0042: Port block in Simulink models

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description In a Simulink model, ports must comply with the following rules:

• Place Inport blocks on the left side of the diagram; you may move
them to prevent signal crossings.

• Place Outport blocks on the right side of the diagram; you may move
them to prevent signal crossings.

• You may use duplicate Inport blocks at the subsystem level, if
required, but avoid doing so, if possible.

- Do not use duplicate Inport blocks at the root level.

6-6

db_0042: Port block in Simulink models

Correct

Incorrect

Notes on the incorrect model

• Inport 2 should be moved in so it does not cross the feedback loop
lines.

• Outport 1 should be moved to the right side of the diagram.

6-7

db_0042: Port block in Simulink models

Rationale Readability

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
positioning and configuration of ports”

6-8

na_0005: Port block name visibility in Simulink
models

ID: Title na_0005: Port block name visibility in Simulink models

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description For some items it is not possible to define a single approach that
is applicable to all organizations’ internal processes. However, it
is important that within a given organization, a single consistent
approach is followed. An organization applying the guidelines must
enforce one of the following alternatives.

Apply one of the following practices:

• The name of an Inport or Outport block is not hidden.
(Format > Hide Name is not allowed.)

• The name of an Inport or Outport block must be hidden.
(Format > Hide Name is used.)

Exception: The names cannot be hidden inside library subsystem
blocks.

6-9

na_0005: Port block name visibility in Simulink models

Correct: Use of signal label

Rationale Readability

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
visibility of block port names”

6-10

jc_0081: Icon display for Port block

ID: Title jc_0081: Icon display for Port block

Priority Recommended

Scope MAAB

MATLAB®

Versions
R14 and later

Prerequisites None

Description The Icon display setting should be set to Port number for Inport and
Outport blocks.

Correct

Incorrect

Incorrect

Rationale Readability

6-11

jc_0081: Icon display for Port block

Last
Changed

V2.2

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
display for port blocks”

6-12

jm_0002: Block resizing

ID: Title jm_0002: Block resizing

Priority Mandatory

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description All blocks in a model must be sized such that the icon is completely
visible and recognizable. In particular, any displayed text (for example,
tunable parameters, file names, or equations) in the icon must be
readable.

This guideline requires that you resize blocks with variable icons or
blocks with a variable number of inputs and outputs. In some cases, it
may not be practical or desirable to resize the icon of a subsystem block
so that all of the input and output names within it are readable. In such
cases, you may hide the names in the icon by using a mask or by hiding
the names in the subsystem associated with the icon. If you do this,
the signal lines coming into and out of the subsystem block should be
clearly labeled in close proximity to the block.

Correct

6-13

jm_0002: Block resizing

Incorrect

Rationale Readability

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

6-14

db_0142: Position of block names

ID: Title db_0142: Position of block names

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description If shown, place the name of a block below the block.

Correct

Incorrect

Rationale • Readability

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
whether block names appear below blocks”

6-15

jc_0061: Display of block names

ID: Title jc_0061: Display of block names

Priority Recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description • Display a block name when it provides descriptive information.

• Do not display a block name if the block function is known and
understood from the block appearance.

Rationale Readability

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
the display attributes of block names”

6-16

db_0146: Triggered, enabled, conditional Subsystems

ID: Title db_0146: Triggered, enabled, conditional Subsystems

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description The blocks that define subsystems as either conditional or iterative
should be located at a consistent location at the top of the subsystem
diagram. These blocks are:

• Action Port

• Enable

• For Iterator

• Switch Case Action

• Trigger

• While Iterator

Note The Action Port is associated with the If and Case blocks. The
Trigger port is also the function-call block.

6-17

db_0146: Triggered, enabled, conditional Subsystems

Correct

Incorrect

Rationale • Readability

Last
Changed

V2.2

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
position of Trigger and Enable blocks”

6-18

db_0140: Display of basic block parameters

ID: Title db_0140: Display of basic block parameters

Priority Recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description Important block parameters modified from the default values should
be displayed.

Note The attribute string is one method to support the display of
block parameters. The block annotation tab allows you to add the
desired attribute information. As of R2011b, masking basic blocks is
a supported method for displaying the information. This method is
allowed if the base icon is distinguishable.

Correct

Correct: Masked block

6-19

db_0140: Display of basic block parameters

Rationale • Readability

Last
Changed

V2.2

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for nondefault block attributes”

6-20

db_0032: Simulink signal appearance

ID: Title db_0032: Simulink signal appearance

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description Signal lines

• Should not cross each other, if possible

• Are drawn with right angles

• Are not drawn one upon the other

• Do not cross any blocks

• Should not split into more than two sublines at a single branching
point

Correct

6-21

db_0032: Simulink signal appearance

Incorrect

Rationale • Readability

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

6-22

db_0141: Signal flow in Simulink models

ID: Title db_0141: Signal flow in Simulink models

Priority Strongly recommended

Scope MAAB

Versions All

Prerequisites None

Description The signal flow in a model is from left to right.

Exception: Feedback loops

Sequential blocks or subsystems are arranged from left to right.

Exception: Feedback loops

Parallel blocks or subsystems are arranged from top to bottom.

Rationale • Readability

6-23

db_0141: Signal flow in Simulink models

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

6-24

jc_0171: Maintaining signal flow when using Goto
and From blocks

ID: Title jc_0171: Maintaining signal flow when using Goto and From blocks

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description • You must maintain visual depiction of signal flow between
subsystems.

• You can use Goto and From blocks if:

- You use at least one signal line between connected subsystems.

- Subsystems connected in a feed-forward and feedback loop have
at least one signal line for each direction.

• Using Goto and From blocks to create buses or connect inputs to
merge blocks are exceptions to this rule.

6-25

jc_0171: Maintaining signal flow when using Goto and
From blocks

Correct

6-26

jc_0171: Maintaining signal flow when using Goto
and From blocks

Incorrect

Rationale • Readability

Last
Changed

V2.2

Model
Advisor
Check

Not applicable

6-27

na_0032: Use of merge blocks

ID: Title na_0032: Use of merge blocks

Priority Strongly recommended

Scope NA-MAAB

MATLAB®

Versions
All

Prerequisites None

Description When using Merge blocks:

• Signals entering a merge block must not branch off to other blocks

• With buses:

- Buses must be identical This includes:

• Number of elements

• Element names

• Element order

• Element data type

• Element size

- Buses must be either all virtual or all nonvirtual

• Bus lines entering a merge block must not branch off to other blocks.

Rationale • Workflow

• Code Generation

See Also jh_0109: Merge blocks

6-28

na_0032: Use of merge blocks

Last
Changed

V3.0

Model
Advisor
Check

Not applicable

6-29

jm_0010: Port block names in Simulink models

ID: Title jm_0010: Port block names in Simulink models

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites • db_0042: Port block in Simulink models

• na_0005: Port block name visibility in Simulink models

Description For some items, though you may not be able to define a single approach
for internal processes of all organizations, within a given organization,
try to follow a single, consistent approach. An organization applying the
guidelines must enforce one of the following options:

• Names of Inport and Outport blocks must match
corresponding signal or bus names.

Exceptions:

- When any combination of an Inport block, an Outport block, and
any other block have the same block name, use a suffix or prefix on
the Inport and Outport blocks.

- One common suffix / prefix is _in for Inport blocks and _out for
Outport blocks.

- You may use any suffix or prefix on the ports, however, the prefix
that you select must be consistent.

- Library blocks and reusable subsystems that encapsulate generic
functionality.

• When names of Inport and Outport blocks are hidden, apply a
consistent naming practice for the blocks. Suggested practices
include leaving the default names (for example, Out1), giving them

6-30

jm_0010: Port block names in Simulink models

the same name as the associated signal, or giving them a shortened
or mangled version of the name of the associated signal.

Rationale • Readability

• Workflow

• Code Generation

• Simulation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for matching port and signal names”

6-31

jc_0281: Naming of Trigger Port block and Enable Port
block

ID: Title jc_0281: Naming of Trigger Port block and Enable Port block

Priority Strongly recommended

Scope J-MAAB

MATLAB®

Versions
All

Prerequisites None

Description For Trigger and Enable port blocks, match the block name of the signal
triggering the subsystem.

Rationale • Readability

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
Trigger and Enable block names”

6-32

jc_0281: Naming of Trigger Port block and Enable
Port block

Signals
• na_0008: Display of labels on signals

• na_0009: Entry versus propagation of signal labels

• db_0097: Position of labels for signals and busses

• db_0081: Unconnected signals, block inputs and block
outputs

The preceding guidelines apply to signals and signal labels. For
background information, see “Signals and Signal Labels” on page D-3.

Some of the preceding guidelines refer to basic blocks. For an
explanation of the meaning and some examples, see “Basic Blocks” on
page D-2.

6-33

na_0008: Display of labels on signals

ID: Title na_0008: Display of labels on signals

Priority Recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description • A label must be displayed on a signal originating from the following
blocks:

- Inport block

- From block (block icon exception applies – see the following Note

- Subsystem block or Stateflow chart block (block icon exception
applies)

- Bus Selector block (the tool forces this to happen)

- Demux block

- Selector block

- Data Store Read block (block icon exception applies)

- Constant block (block icon exception applies)

• A label must be displayed on any signal connected to the following
destination blocks (directly or by way of a basic block that performs
a nontransformative operation):

- Outport block

- Goto block

- Data Store Write block

- Bus Creator block

6-34

na_0008: Display of labels on signals

- Mux block

- Subsystem block

- Chart block

Note Block icon exception (applicable only where called out): If
the signal label is visible in the originating block icon display, the
connected signal does not need to have the label displayed, unless the
signal label is needed elsewhere due to a destination-based rule.

Correct

Incorrect

Rationale • Readability

• Verification and Validation

• Workflow

• Verification and Validation

• Code Generation

6-35

na_0008: Display of labels on signals

Last
Changed

V2.2

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
signal line labels”

6-36

na_0009: Entry versus propagation of signal labels

ID: Title na_0009: Entry versus propagation of signal labels

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites na_0008: Display of labels on signals

Description If a label is present on a signal, the following rules define whether that
label is created there (entered directly on the signal) or propagated from
its true source (inherited from elsewhere in the model by using the less
than (<) character).

• Any displayed signal label must be entered for signals that:

- Originate from an Inport at the Root (top) Level of a model

- Originate from a basic block that performs a transformative
operation (For the purpose of interpreting this rule only, the
Bus Creator block, Mux block, and Selector block are considered
to be included among the blocks that perform transformative
operations.)

• Any displayed signal label must be propagated for signals that:

- Originate from an Inport block in a nested subsystem

Exception: If the nested subsystem is a library subsystem, a
label may be entered on the signal coming from the Inport to
accommodate reuse of the library block.

- Originate from a basic block that performs a nontransformative
operation

- Originate from a Subsystem or Stateflow chart block

6-37

na_0009: Entry versus propagation of signal labels

Exception: If the connection originates from the output of a library
subsystem block instance, a new label may be entered on the
signal to accommodate reuse of the library block.

Rationale • Readability

• Verification and Validation

• Workflow

• Verification and Validation

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for propagated signal labels”

6-38

db_0097: Position of labels for signals and busses

ID: Title db_0097: Position of labels for signals and busses

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description The labels must be visually associated with the corresponding signal
and not overlap other labels, signals, or blocks.

Labels should be located consistently below horizontal lines and close to
the corresponding source or destination block.

Rationale • Readability

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

6-39

db_0081: Unconnected signals, block inputs and block
outputs

ID: Title db_0081: Unconnected signals, block inputs and block outputs

Priority Mandatory

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description A system must not have any:

• Unconnected subsystem or basic block inputs

• Unconnected subsystem or basic block outputs

• Unconnected signal lines

In addition:

• An otherwise unconnected input should be connected to a ground
block

• An otherwise unconnected output should be connected to a terminator
block

Rationale • Readability

• Workflow

• Verification and Validation

Last
Changed

V2.0

6-40

db_0081: Unconnected signals, block inputs and block
outputs

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for unconnected ports and signal lines”

6-41

db_0081: Unconnected signals, block inputs and block
outputs

Block Usage
• na_0003: Simple logical expressions in If Condition

block

• na_0002: Appropriate implementation of fundamental
logical and numerical operations

• jm_0001: Prohibited Simulink standard blocks inside
controllers

• hd_0001: Prohibited Simulink sinks

• na_0011: Scope of Goto and From blocks

• jc_0141: Use of the Switch block

• jc_0121: Use of the Sum block

• jc_0131: Use of Relational Operator block

• jc_0161: Use of Data Store Read/Write/Memory blocks

Some of the preceding guidelines refer to basic blocks. For an
explanation of the meaning and some examples, see “Basic Blocks” on
page D-2.

6-42

na_0003: Simple logical expressions in If Condition
block

ID: Title na_0003: Simple logical expressions in If Condition block

Priority Mandatory

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description A logical expression may be implemented within an If Condition block
instead of building it up with logical operation blocks, if the expression
contains two or fewer primary expressions. A primary expression is
defined as one of the following:

• An input

• A constant

• A constant parameter

• A parenthesized expression containing no operators except zero or
one instance of the following operators: < , <= , >, >=, ~=, ==, ~. (See
the following examples.)

Exception

A logical expression may contain more than two primary expressions
if both of the following are true:

• The primary expressions are all inputs

• Only one type of logical operator is present

Examples of Acceptable Exceptions

• u1 || u2 || u3 ||u4 || u5

• u1 && u2 && u3 && u4

6-43

na_0003: Simple logical expressions in If Condition
block

Examples of Primary Expressions

• u1

• 5

• K

• (u1 > 0)

• (u1 <= G)

• (u1 > U2)

• (~u1)

• (EngineState.ENGINE_RUNNING)

Examples of Acceptable Logical Expressions

• u1 || u2

• (u1 > 0) && (u1 < 20)

• (u1 > 0) && (u2 < u3)

• (u1 > 0) && (~u2)

• (EngineState.ENGINE_RUNNING > 0) && (PRNDLState.PRNDL_PARK)

Note In this example, EngineState.ENGINE_RUNNING and
PRNDLState.PRNDL_PARK are enumeration literals.

Examples of Unacceptable Logical Expressions

u1 && u2 || u3 (too many primary expressions)

u1 && (u2 || u3) (unacceptable operator within
primary expression)

6-44

na_0003: Simple logical expressions in If Condition
block

(u1 > 0) && (u1 < 20) && (u2 > 5) (too many primary expressions
that are not inputs)

(u1 > 0) && ((2*u2) > 6) (unacceptable operator within
primary expression)

Rationale • Readability

• Workflow

• Code Generation

Last
Changed

V2.2

Model
Advisor
Check

Not applicable

6-45

na_0002: Appropriate implementation of fundamental
logical and numerical operations

ID: Title na_0002: Appropriate implementation of fundamental logical and
numerical operations

Priority Mandatory

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description • Blocks that are intended to perform numerical operations must not
be used to perform logical operations.

Incorrect

• A logical output should never be connected directly to the input of
blocks that operate on numerical inputs.

• The result of a logical expression fragment should never be operated
on by a numerical operator.

6-46

na_0002: Appropriate implementation of fundamental
logical and numerical operations

Incorrect

• Blocks that are intended to perform logical operations must not be
used to perform numerical operations.

• A numerical output should never be connected to the input of blocks
that operate on logical inputs.

Incorrect

Rationale • Readability

• Verification and Validation

• Workflow

• Code Generation

Last
Changed

V3.0

6-47

na_0002: Appropriate implementation of fundamental
logical and numerical operations

Model
Advisor
Check

Not applicable

6-48

jm_0001: Prohibited Simulink standard blocks inside
controllers

ID: Title jm_0001: Prohibited Simulink standard blocks inside controllers

Priority Mandatory

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description • Controller models must be designed from discrete blocks.

• MathWorks “Simulink Block Data Type Support” table provides a
list of blocks that support production code generation. See “Simulink
Block Data Type Support”.

- Use blocks listed as “Code Generation Support.”

- Do not use blocks listed as “Not recommended for production code.”
See footnote 4 in the table.

• In addition to the blocks defined by the above rule, do not use the
following blocks:

The following sources are not allowed:

Band-Limited
White Noise

Random
Number

Pulse
Generator

Uniform
Random
Number

Sine Wave

6-49

jm_0001: Prohibited Simulink standard blocks inside
controllers

The following additional blocks are not allowed. The MAAB Style guide
group recommends not using the following blocks. The list may be
extended by individual companies.

Slider Gain
Real-Imag to
Complex

Manual Switch Polynomial

Complex to
Magnitude-Angle

Interpreted
MATLAB
Function

Magnitude-Angle
to Complex

Goto Tag
Visibility

Complex to
Real-Imag

Probe

Rationale • Readability

• Verification and Validation

• Workflow

• Code Generation

• Simulation

Last
Changed

V2.2

6-50

jm_0001: Prohibited Simulink standard blocks inside
controllers

Model
Advisor
Checks

• By Task > Modeling Standards for MAAB > Simulink > “Check
for blocks not recommended for C/C++ production code
deployment”

• By Task > Modeling Standards for MAAB > Simulink > “Check
for prohibited blocks in discrete controllers”

6-51

hd_0001: Prohibited Simulink sinks

ID: Title hd_0001: Prohibited Simulink sinks

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description Controller models must be designed from discrete blocks.

The following sink blocks are not allowed:

To File Stop
Simulation

To
Workspace

Note Simulink Scope and Display blocks are allowed in the model
diagram. Consider using Simulink Signal logging and Signal and Scope
Manager for data logging and viewing requirements.

Rationale • Verification and Validation

• Code Generation

• Simulation

Last
Changed

V2.2

6-52

hd_0001: Prohibited Simulink sinks

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for prohibited sink blocks”

6-53

na_0011: Scope of Goto and From blocks

ID: Title na_0011: Scope of Goto and From blocks

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description For signal flows, the following rules apply:

• From and Goto blocks must use local scope.

Note Control flow signals may use global scope.

Control flow signals are output from:

• Function-call generators

• If and Case blocks

• Function call outputs from MATLAB and Stateflow blocks

Control flow signals are identified as dashed lines in the model after
updating a Simulink model.

6-54

na_0011: Scope of Goto and From blocks

Rationale • Readability

• Verification and Validation

• Workflow

• Code Generation

• Simulation

Last
Changed

V2.2

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
scope of From and Goto blocks”

6-55

jc_0141: Use of the Switch block

ID: Title jc_0141: Use of the Switch block

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description • The switch condition, input 2, must be a Boolean value.

• The block parameter, Criteria for passing first input, should be
set to u2~=0.

6-56

jc_0141: Use of the Switch block

Correct

Incorrect

6-57

jc_0141: Use of the Switch block

Rationale • Readability

• Verification and Validation

• Workflow

• Code Generation

Last
Changed

V2.2

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
usage of Switch blocks”

6-58

jc_0121: Use of the Sum block

ID: Title jc_0121: Use of the Sum block

Priority Recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description Sum blocks should:

• Use the “rectangular” shape.

• Be sized so that the input signals do not overlap.

Correct

6-59

jc_0121: Use of the Sum block

Incorrect

You may use the round shape in feedback loops.

• There should be no more than three inputs.

• Position the inputs at 90,180,270 degrees.

• Position the output at 0 degrees.

Correct

6-60

jc_0121: Use of the Sum block

Incorrect

Correct

Incorrect

6-61

jc_0121: Use of the Sum block

Rationale Readability

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

6-62

jc_0131: Use of Relational Operator block

ID: Title jc_0131: Use of Relational Operator block

Priority Recommended

Scope J-MAAB

MATLAB®

Versions
All

Prerequisites None

Description When the relational operator is used to compare a signal to a constant
value, the constant input should be the second (lower) input signal.

Correct

Incorrect

Rationale • Readability

Last
Changed

V2.0

6-63

jc_0131: Use of Relational Operator block

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
usage of Relational Operator blocks”

6-64

jc_0161: Use of Data Store Read/Write/Memory
blocks

ID: Title jc_0161: Use of Data Store Read/Write/Memory blocks

Priority Strongly recommended

Scope J-MAAB

MATLAB®

Versions
All

Prerequisites jc_0341: Data flow layer

Description Data Store Memory, Data Store Read, and Data Store Write blocks are

• Prohibited in a data flow layer

• Allowed between subsystems running at different rates

Rationale • Readability

• Workflow

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

6-65

jc_0161: Use of Data Store Read/Write/Memory blocks

Block Parameters
• db_0112: Indexing

• na_0010: Grouping data flows into signals

• db_0110: Tunable parameters in basic blocks

Some of the preceding guidelines refer to basic blocks. For an
explanation of the meaning and some examples, see “Basic Blocks” on
page D-2.

6-66

db_0112: Indexing

ID: Title db_0112: Indexing

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description Use a consistent vector indexing method for all blocks.

When possible, use zero-based indexing to improve code efficiency.
However, since MATLAB blocks do not support zero-based indexing,
one-based indexing can be used for models containing MATLAB blocks.

See Also • “cgsl_0101: Zero-based indexing”

• “hisl_0021: Consistent vector indexing method”

Rationale • Readability

• Verification and Validation

• Code Generation

Last
Changed

V2.2

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for indexing in blocks”

6-67

na_0010: Grouping data flows into signals

ID: Title na_0010: Grouping data flows into signals

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description Vectors

The individual scalar signals composing a vector must have common
functionality, data types, dimensions, and units. The most common
example of a vector signal is sensor or actuator data that is grouped into
an array indexed by location. The output of a Mux block must always be
a vector. The inputs to a Mux block must always be scalars.

Busses

Signals that do not meet criteria for use as a vector, as previously
described, must only be grouped into bus signals. Use Bus Selector
blocks only with a bus signal input; do not use them to extract scalar
signals from vector signals.

Examples

Some examples of vector signals include:

Vector type Size

Row vector [1 n]

Column vector [n 1]

Wheel speed vector [1 Number of wheels]

Cylinder vector [1 Number of cylinders]

6-68

na_0010: Grouping data flows into signals

Vector type Size

Position vector based on 2D
coordinates

[1 2]

Position vector based on 3D
coordinates

[1 3]

Some examples of bus signals include:

Bus type Elements

Force Vector [Fx, Fy, Fz]

Position

Wheel Speed Vector [Θlf, Θrf, Θlr, Θrr]

Acceleration

Sensor Bus

Pressure

Sensor BusController Bus

Actuator Bus

Coolant TemperatureSerial Data Bus

Engine Speed, Passenger Door Open

Rationale • Readability

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
usage of buses and Mux blocks”

6-69

db_0110: Tunable parameters in basic blocks

ID: Title db_0110: Tunable parameters in basic blocks

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description To ensure that a parameter is tunable, enter it in a block dialog field:

• Without any expression.

• Without a data type conversion.

• Without selection of rows or columns.

Correct

Incorrect

Rationale • Readability

• Verification and Validation

• Workflow

• Code Generation

• Simulation

6-70

db_0110: Tunable parameters in basic blocks

Last
Changed

V2.2

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
usage of tunable parameters in blocks”

6-71

db_0110: Tunable parameters in basic blocks

Simulink Patterns
• na_0012: Use of Switch vs. If-Then-Else Action

Subsystem

• db_0114: Simulink patterns for If-then-else-if
constructs

• db_0115: Simulink patterns for case constructs

• na_0028: Use of If-Then-Else Action Subsystem to Replace
Multiple Switches

• db_0116: Simulink patterns for logical constructs with
logical blocks

• db_0117: Simulink patterns for vector signals

• jc_0351: Methods of initialization

• jc_0111: Direction of Subsystem

The preceding guidelines illustrate sample patterns used in Simulink
diagrams. As such, the patterns normally would be part of a much
larger Simulink diagram.

Some of the preceding guidelines refer to basic blocks. For an
explanation of the meaning and some examples, see “Basic Blocks” on
page D-2.

6-72

na_0012: Use of Switch vs. If-Then-Else Action
Subsystem

ID: Title na_0012: Use of Switch vs. If-Then-Else Action Subsystem

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description The Switch block should be used for modeling simple if-then-else
structures, if the associated then and else actions involve only the
assignment of constant values.

The if-then-else action subsystem construct:

• Should be used for modeling if-then-else structures, if the associated
then and/or else actions require complicated computations. This
maximizes simulation efficiency and the efficiency of generated code.
(Note that even a basic block, for example a table lookup, may require
fairly complicated computations.)

6-73

na_0012: Use of Switch vs. If-Then-Else Action
Subsystem

• Must be used for modeling if-then-else structures, if the purpose of
the construct is to avoid an undesirable numerical computation, such
as division by zero.

• Should be used for modeling if-then-else structures, if the explicit or
implied then or the else action is just to hold the associated output
values.

In other cases, the degree of complexity of the then and/or else action
computations and the intelligence of the Simulink simulation and code
generation engines determine the appropriate construct.

These statements also apply to more complicated nested and cascaded
if-then-else structures and case structure implementations.

Rationale • Readability

• Verification and Validation

• Workflow

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

6-74

db_0114: Simulink patterns for If-then-else-if
constructs

ID: Title db_0114: Simulink patterns for If-then-else-if constructs

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description Use the following patterns for If-then-else-if constructs within a
Simulink model:

Equivalent Functionality Simulink Pattern

if then else if with blocks

if (If_Condition) {
output_signal = If_Value;
}
else if (Else_If_Condition) {
output_signal =
Else_If_Value;
}
else {
output_signal =
Else_Value;
}

6-75

db_0114: Simulink patterns for If-then-else-if constructs

Equivalent Functionality Simulink Pattern

if then else if with if/then/else
subsystems

if(Fault_1_Active &
Fault_2_Active)
{

ErrMsg = SaftyCrit;
}
else if (Fault_1_Active |
Fault_2_Active)
{

ErrMsg = DriveWarn;
}
else
{

ErrMsg = NoFaults;
}

Rationale • Readability

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

6-76

db_0115: Simulink patterns for case constructs

ID: Title db_0115: Simulink patterns for case constructs

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description Use the following patterns for case constructs within a Simulink model:

Equivalent Functionality Simulink Pattern

case with Switch Case block

switch (PRNDL_Enum)
{
case 1

TqEstimate = ParkV;
break;

case 2
TqEstimae = RevV;
break;

default
TqEstimate = NeutralV;
break;

}

Rationale • Readability

Last
Changed

V2.2

6-77

db_0115: Simulink patterns for case constructs

Model
Advisor
Check

Not applicable

6-78

na_0028: Use of If-Then-Else Action Subsystem to
Replace Multiple Switches

ID: Title na_0028: Use of If-Then-Else Action Subsystem to Replace Multiple
Switches

Priority Recommended

Scope NA-MAAB

MATLAB®

Versions
All

Prerequisites • na_0012: Use of Switch vs. If-Then-Else Action
Subsystem

• db_0144: Use of Subsystems

Description The use of switch constructs should be limited, typically to 3 levels.
Replace switch constructs that have more than 3 levels with an
If-Then-Else action subsystem construct.

Incorrect

6-79

na_0028: Use of If-Then-Else Action Subsystem to
Replace Multiple Switches

6-80

na_0028: Use of If-Then-Else Action Subsystem to
Replace Multiple Switches

Rationale • Readability

See Also bn_0003: Use of If-Then-Else Action Subsystem to Replace Multiple
Switches

Last
Changed

V3.0

Model
Advisor
Check

Not applicable

6-81

db_0116: Simulink patterns for logical constructs with
logical blocks

ID: Title db_0116: Simulink patterns for logical constructs with logical blocks

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description Use the following patterns for logical combinations within Simulink:

6-82

db_0116: Simulink patterns for logical constructs with
logical blocks

Equivalent Functionality Simulink Pattern

Combination of logical signals:
conjunctive

Combination of logical signals:
disjunctive

Rationale • Readability

6-83

db_0116: Simulink patterns for logical constructs with
logical blocks

Last
Changed

V1.0

Model
Advisor
Check

Not applicable

6-84

db_0117: Simulink patterns for vector signals

ID: Title db_0117: Simulink patterns for vector signals

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description Simulink is a vectorizable modeling language allowing for the direct
processing of vector data. Use the following patterns for vector signals
within a Simulink model:

Equivalent Functionality Simulink Pattern

Vector loop

for (i=0;
i<input_vector_size; i++)
{
output_vector(i) =
input_vector(i) *
tunable_parameter_value;
}

Vector loop

for (i=0;
i<input_vector_size; i++)
{
output_vector(i) =
input_vector(i) *
tunable_parameter_vector(i);
}

6-85

db_0117: Simulink patterns for vector signals

Equivalent Functionality Simulink Pattern

Vector loop

output_signal = 1;
for (i=0;
i<input_vector_size; i++)
{
output_signal =
output_signal *
input_vector(i);
}

Vector loop

output_signal = 1;
for (i=0;
i<input_vector_size; i++)
{
output_signal =
output_signal /
input_vector(i);
}

Vector loop

for (i=0;
i<input_vector_size; i++)
{
output_vector(i) =
input_vector(i) +
tunable_parameter_value;
}

6-86

db_0117: Simulink patterns for vector signals

Equivalent Functionality Simulink Pattern

Vector loop

for (i=0;
i<input_vector_size; i++)
{
output_vector(i) =
input_vector(i) +
tunable_parameter_vector(i);
}

Vector loop:

output_signal = 0;
for (i=0;
i<input_vector_size; i++)
{
output_signal =
output_signal +
input_vector(i);
}

Vector loop:

output_signal = 0;
for (i=0;
i<input_vector_size; i++)
{
output_signal =
output_signal -
input_vector(i);
}

6-87

db_0117: Simulink patterns for vector signals

Equivalent Functionality Simulink Pattern

Minimum or maximum of a signal or a
vector over time:

Change event of a signal or a vector:

Rationale • Readability

• Verification and Validation

• Code Generation

Last
Changed

V2.2

6-88

db_0117: Simulink patterns for vector signals

Model
Advisor
Check

Not applicable

6-89

jc_0351: Methods of initialization

ID: Title jc_0351: Methods of initialization

Priority Recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites db_0140: Display of basic block parameters

Description Simple Initialization

• Blocks such as Unit Delay, which have an initial value field, can be
used to set simple initial values.

• To determine if the initial value needs to be displayed, see MAAB
Guideline db_0140: Display of basic block parameters.

Example

Initialization that Requires Computation

The following rules apply for complex initialization:

• The initialization should be performed in a separate subsystem.

• The initialization subsystem should have a name that indicates that
initialization is performed by the subsystem.

6-90

jc_0351: Methods of initialization

Complex initialization may be done at a local level (Example A), at a
global level (Example B), or a combination of local and global.

Example A

Example B

Or

6-91

jc_0351: Methods of initialization

Rationale • Readability

• Code Generation

Last
Changed

V2.2

Model
Advisor
Check

Not applicable

6-92

jc_0111: Direction of Subsystem

ID: Title jc_0111: Direction of Subsystem

Priority Strongly recommended

Scope J-MAAB

MATLAB®

Versions
All

Prerequisites None

Description Subsystem must not be reversed.

Correct

Incorrect

6-93

jc_0111: Direction of Subsystem

Rationale Readability

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
orientation of Subsystem blocks”

6-94

7

Stateflow

• “Chart Appearance” on page 7-2

• “Stateflow Data and Operations” on page 7-20

• “Events” on page 7-42

• “Statechart Patterns” on page 7-47

• “Flowchart Patterns” on page 7-53

• “State Chart Architecture” on page 7-69

7 Stateflow®

Chart Appearance
• db_0123: Stateflow port names

• db_0129: Stateflow transition appearance

• db_0137: States in state machines

• db_0133: Use of patterns for Flowcharts

• db_0132: Transitions in Flowcharts

• jc_0501: Format of entries in a State block

• jc_0511: Setting the return value from a graphical function

• jc_0531: Placement of the default transition

• jc_0521: Use of the return value from graphical functions

7-2

db_0123: Stateflow port names

ID: Title db_0123: Stateflow port names

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description The name of a Stateflow input or output should be the same as the
corresponding signal.

Exception: Reusable Stateflow blocks may have different port names.

Rationale • Readability

• Code Generation

Last
Changed

V1.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
for mismatches between names of Stateflow ports and
associated signals”

7-3

db_0129: Stateflow transition appearance

ID: Title db_0129: Stateflow transition appearance

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description Transitions in Stateflow:

• Do not cross each other, if possible.

• Are not drawn one upon the other.

• Do not cross any states, junctions, or text fields.

• Allowed if transition is to an internal state.

Transition labels may be visually associated to the corresponding
transition.

7-4

db_0129: Stateflow transition appearance

Correct

Correct: Transition crosses state boundary to connect to substate

7-5

db_0129: Stateflow transition appearance

Incorrect: Transitions cross each other and transition crosses through
state

Rationale • Readability

Last
Changed

V2.2

Model
Advisor
Check

Not applicable

7-6

db_0137: States in state machines

ID: Title db_0137: States in state machines

Priority Mandatory

Scope MAAB

MATLAB®

Versions
All

Prerequisites db_0149: Flowchart patterns for condition actions

Description For all levels in a state machine, including the root level, for states with
exclusive decomposition the following rules apply:

• At least two exclusive states must exist.

• A state cannot have only one substate.

• The initial state of every hierarchical level with exclusive states is
clearly defined by a default transition. In the case of multiple default
transitions, there must always be an unconditional default transition.

Rationale • Readability

• Workflow

• Code Generation

• Verification and Validation

Last
Changed

V3.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Sstateflow > “Check
usage of exclusive and default states in state machines”

7-7

db_0133: Use of patterns for Flowcharts

ID: Title db_0133: Use of patterns for Flowcharts

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description A Flowchart is built with the help of Flowchart patterns (for example,
if-then-else, for loop, and so on):

• The data flow is oriented from the top to the bottom.

• Patterns are connected with empty transitions.

Rationale • Readability

Last
Changed

V2.2

Model
Advisor
Check

Not applicable

7-8

db_0132: Transitions in Flowcharts

ID: Title db_0132: Transitions in Flowcharts

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description The following rules apply to transitions in Flowcharts:

• Conditions are drawn on the horizontal.

• Actions are drawn on the vertical.

• Loop constructs are intentional exceptions to this rule.

• Transitions have a condition, a condition action, or an empty
transition.

Transition with Condition

Transition with Condition Action

7-9

db_0132: Transitions in Flowcharts

Empty Transition

Transition actions are not used in Flowcharts. Transition actions are
only valid when used in transitions between states in a state machine,
otherwise they are not activated because of the inherent dependency on
a valid state to state transition to activate them.

Transition Action

At every junction, except for the last junction of a flow diagram, exactly
one unconditional transition begins. Every decision point (junction)
must have a default path.

7-10

db_0132: Transitions in Flowcharts

Transitions with Comments

Rationale • Readability

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
Transition orientations in flowcharts”

7-11

jc_0501: Format of entries in a State block

ID: Title jc_0501: Format of entries in a State block

Priority Recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description A new line should:

• Start after the entry (en), during (du), and exit (ex) statements.

• Start after the completion of an assignment statement “;”.

Correct

7-12

jc_0501: Format of entries in a State block

Incorrect

Failed to start a new line after en, du, and ex.

Incorrect

Failed to start a new line after the completion of an assignment
statement “;”.

Rationale Readability

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
entry formatting in State blocks in Stateflow charts”

7-13

jc_0511: Setting the return value from a graphical
function

ID: Title jc_0511: Setting the return value from a graphical function

Priority Mandatory

Scope J-MAAB

MATLAB®

Versions
All

Prerequisites None

Description The return value from a graphical function must be set in only one place.

Correct

Return value A is set in one place.

7-14

jc_0511: Setting the return value from a graphical
function

Incorrect

Return value A is set in multiple places.

Rationale • Readability

• Verification and Validation

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
return value assignments of graphical functions in Stateflow
charts”

7-15

jc_0531: Placement of the default transition

ID: Title jc_0531: Placement of the default transition

Priority Recommended

Scope J-MAAB

MATLAB®

Versions
All

Prerequisites None

Description • Default transition is connected at the top of the state.

• The destination state of the default transition is put above the other
states in the same hierarchy.

Correct

• The default transition is connected at the top of the state.

• The destination state of the default transition is put above the other
states in the same hierarchy.

7-16

jc_0531: Placement of the default transition

Incorrect

• Default transition is connected at the side of the state (State 1).

• The destination state of the default transition is lower than the other
states in the same hierarchy (SubSt_off).

Rationale Readability

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
default transition placement in Stateflow charts”

7-17

jc_0521: Use of the return value from graphical
functions

ID: Title jc_0521: Use of the return value from graphical functions

Priority Recommended

Scope J-MAAB

MATLAB®

Versions
All

Prerequisites None

Description The return value from a graphical function should not be used directly
in a comparison operation.

Correct

An intermediate variable is used in the conditional expression after
the assignment of the return value from the function temp_test to
the intermediate variable a.

7-18

jc_0521: Use of the return value from graphical
functions

Incorrect

Return value of the function temp_test is used in the conditional
expression.

Rationale • Readability

• Verification and Validation

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
usage of return values from a graphical function in Stateflow
charts”

7-19

jc_0521: Use of the return value from graphical
functions

Stateflow Data and Operations
• na_0001: Bitwise Stateflow operators

• jc_0451: Use of unary minus on unsigned integers in
Stateflow

• na_0013: Comparison operation in Stateflow

• db_0122: Stateflow and Simulink interface signals and
parameters

• db_0125: Scope of internal signals and local auxiliary
variables

• jc_0481: Use of hard equality comparisons for floating
point numbers in Stateflow

• jc_0491: Reuse of variables within a single Stateflow
scope

• jc_0541: Use of tunable parameters in Stateflow

• db_0127: MATLAB commands in Stateflow

• jm_0011: Pointers in Stateflow

7-20

na_0001: Bitwise Stateflow operators

ID: Title na_0001: Bitwise Stateflow operators

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description The bitwise Stateflow operators (&, |, and ^) should not be used in
Stateflow charts unless you want bitwise operations:

To enable bitwise operations,

1 Select File > Chart Properties.

2 Select Enable C-bit operations.

Correct

Use && and || for Boolean operation.

7-21

na_0001: Bitwise Stateflow operators

Use & and | for bit operation.

Incorrect

Use & and | for Boolean operation.

Rationale • Readability

• Verification and Validation

7-22

na_0001: Bitwise Stateflow operators

• Code Generation

Last
Changed

V2.2

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
for bitwise operations in Stateflow charts”

7-23

jc_0451: Use of unary minus on unsigned integers in
Stateflow

ID: Title jc_0451: Use of unary minus on unsigned integers in Stateflow

Priority Recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description Do not perform unary minus on unsigned integers.

Correct

Incorrect

Rationale • Verification and Validation

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
for unary minus operations on unsigned integers in Stateflow
charts”

7-24

na_0013: Comparison operation in Stateflow

ID: Title na_0013: Comparison operation in Stateflow

Priority Recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description • Comparisons should be made only between variables of the same
data type.

• If comparisons are made between variables of different data types,
the variables need to be explicitly type cast to matching data types.

Correct

Same data type in “i” and “n”

Incorrect

Different data type in “i” and “d”

7-25

na_0013: Comparison operation in Stateflow

Correct

Do not make comparisons between unsigned integers and negative
numbers.

Incorrect

Rationale • Verification and Validation

• Code Generation

• Simulation

Last
Changed

V2.1

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
for comparison operations in Stateflow charts”

7-26

db_0122: Stateflow and Simulink interface signals
and parameters

ID: Title db_0122: Stateflow and Simulink interface signals and parameters

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description A Chart uses strong data typing with Simulink and requires that you
select the Use Strong Data Typing with Simulink I/O parameter.

Rationale • Verification and Validation

• Code Generation

• Simulation

7-27

db_0122: Stateflow and Simulink interface signals and
parameters

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
for Strong Data Typing with Simulink I/O”

7-28

db_0125: Scope of internal signals and local auxiliary
variables

ID: Title db_0125: Scope of internal signals and local auxiliary variables

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description Internal signals and local auxiliary variables are "Local data" in
Stateflow:

• All local data of a Stateflow block must be defined on the chart level
or below the Object Hierarchy.

• No local variables may exist on the machine level (that is, no
interaction should occur between local data in different charts).

• Parameters and constants are allowed at the machine level.

Correct

7-29

db_0125: Scope of internal signals and local auxiliary
variables

Incorrect

Rationale • Readability

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
Stateflow data objects with local scope”

7-30

jc_0481: Use of hard equality comparisons for floating
point numbers in Stateflow

ID: Title jc_0481: Use of hard equality comparisons for floating point numbers
in Stateflow

Priority Recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description • Do not use hard equality comparisons (Var1 == Var2) with two
floating-point numbers.

• If a hard comparison is required, a margin of error should be defined
and used in the comparison (LIMIT, in the example).

• Hard equality comparisons may be done between two integer data
types.

Correct

7-31

jc_0481: Use of hard equality comparisons for floating
point numbers in Stateflow

Incorrect

Rationale • Verification and Validation

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
for equality operations between floating-point expressions in
Stateflow charts”

7-32

jc_0491: Reuse of variables within a single Stateflow
scope

ID: Title jc_0491: Reuse of variables within a single Stateflow scope

Priority Recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description The same variable should not have multiple meanings (usages) within a
single Stateflow state.

Correct

Variable of loop counter must not be used other than loop counter.

7-33

jc_0491: Reuse of variables within a single Stateflow
scope

Incorrect

The meaning of the variable i changes from the index of the loop
counter to the sum of a+b.

7-34

jc_0491: Reuse of variables within a single Stateflow
scope

Correct

tempVar is defined as local scope in both SubState_A and SubState_B.

Rationale • Readability

• Verification

• Code Generation

Last
Changed

V2.2

7-35

jc_0491: Reuse of variables within a single Stateflow
scope

Model
Advisor
Check

Not applicable

7-36

jc_0541: Use of tunable parameters in Stateflow

ID: Title jc_0541: Use of tunable parameters in Stateflow

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description Create tunable parameters in Stateflow charts in one of the following
ways:

• Define the parameters in the Stateflow chart and corresponding
parameters in the base workspace.

• Include the tunable parameters an input into the Stateflow chart.
The parameters must be defined in the base workspace.

Base Workspace Definitions

Stateflow® Chart Definitions

7-37

jc_0541: Use of tunable parameters in Stateflow

Stateflow® Chart

Rationale • Verification

• Code Generation

Last
Changed

V2.2

Model
Advisor
Check

Not applicable

7-38

db_0127: MATLAB commands in Stateflow

ID: Title db_0127: MATLAB commands in Stateflow

Priority Mandatory

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description In Stateflow charts, do not use the .ml syntax.

Individual companies should decide on the use of MATLAB functions. If
they are permitted, then MATLAB functions should only be accessed
through the MATLAB function block.

Correct

Incorrect

7-39

db_0127: MATLAB commands in Stateflow

Rationale • Verification and Validation

• Code Generation

• Simulation

Note Code generation supports a limited subset of the MATLAB
functions. For a complete list of the supported function, see the
MathWorks documentation.

Last
Changed

V2.2

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
for MATLAB expressions in Stateflow charts”

7-40

jm_0011: Pointers in Stateflow

ID: Title jm_0011: Pointers in Stateflow

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description In a Stateflow diagram, pointers to custom code variables are not
allowed.

Rationale • Readability

• Verification and Validation

• Code Generation

Last
Changed

V1.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
for pointers in Stateflow charts”

7-41

jm_0011: Pointers in Stateflow

Events
• db_0126: Scope of events

• jm_0012: Event broadcasts

7-42

db_0126: Scope of events

ID: Title db_0126: Scope of events

Priority Mandatory

Scope MAAB

MATLAB®

Versions
Pre R2009b

Prerequisites None

Description The following rules apply to events in Stateflow:

• All events of a Chart must be defined on the chart level or lower.

• There is no event on the machine level (i.e. there is no interaction
with local events between different charts).

Specifics

Rationale • Readability

• Verification and Validation

• Workflow

• Code Generation

• Verification and Validation

Last
Changed

V2.2

Model
Advisor
Check

Not applicable

7-43

jm_0012: Event broadcasts

ID: Title jm_0012: Event broadcasts

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites db_0126: Scope of events

Description The following rules apply to event broadcasts in Stateflow:

• Directed event broadcasts are the only type of event broadcasts
allowed.

• The send syntax or qualified event names are used to direct the event
to a particular state.

• Multiple send statements should be used to direct an event to more
than one state.

Correct: Example Using Send Syntax

7-44

jm_0012: Event broadcasts

Correct: Example Using Qualified Event Names

Incorrect: Use of a non-directed event

Rationale • Readability

7-45

jm_0012: Event broadcasts

• Workflow

• Verification and Validation

• Code Generation

• Simulation

Last
Changed

V2.2

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
for event broadcasts in Stateflow charts”

7-46

jm_0012: Event broadcasts

Statechart Patterns
• db_0150: State machine patterns for conditions

• db_0151: State machine patterns for transition actions

7-47

db_0150: State machine patterns for conditions

ID: Title db_0150: State machine patterns for conditions

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description The following patterns are used for conditions within Stateflow state
machines:

Equivalent
Functionality

State Machine Pattern

One condition:

(condition)

7-48

db_0150: State machine patterns for conditions

Equivalent
Functionality

State Machine Pattern

Up to three conditions,
short form:

(The use of different
logical operators in this
form is not allowed. Use
subconditions instead.)

(condition1 &&
condition2)
(condition1 ||
condition2)

Two or more conditions,
multiline form:

A subcondition is a set of
logical operations, all of
the same type, enclosed
in parentheses.

(The use of different
operators in this form
is not allowed. Use
subconditions instead.)

(condition1 ...
&& condition2 ...
&& condition3)
(condition1 ...
|| condition2 ...
|| condition3)

Rationale • Readability

7-49

db_0150: State machine patterns for conditions

Last
Changed

V2.2

Model
Advisor
Check

Not applicable

7-50

db_0151: State machine patterns for transition actions

ID: Title db_0151: State machine patterns for transition actions

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description The following patterns are used for transition actions within Stateflow
state machines:

Equivalent Functionality State Machine Pattern

One transition action:

action;

Two or more transition
actions, multiline form:

(Two or more transition
actions in one line are not
allowed.)

action1;
action2;
action3;

7-51

db_0151: State machine patterns for transition actions

Rationale • Readability

• Workflow

• Verification and Validation

• Code Generation

• Simulation

Last
Changed

V2.2

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
transition actions in Stateflow charts”

7-52

db_0151: State machine patterns for transition actions

Flowchart Patterns
• db_0148: Flowchart patterns for conditions

• db_0149: Flowchart patterns for condition actions

• db_0134: Flowchart patterns for If constructs

• db_0159: Flowchart patterns for case constructs

• db_0135: Flowchart patterns for loop constructs

The preceding guidelines illustrate sample patterns used in flow charts.
As such, they would normally be part of a much larger Stateflow
diagram.

7-53

db_0148: Flowchart patterns for conditions

ID: Title db_0148: Flowchart patterns for conditions

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description Use the following patterns for conditions within Stateflow Flowcharts:

Equivalent Functionality Flowchart Pattern

One condition:

[condition]

Up to three conditions, short
form:

(The use of different logical
operators in this form is not
allowed. Use subconditions
instead.)

[condition1
&& condition2
&& condition3]
[condition1
|| condition2
|| condition3]

7-54

db_0148: Flowchart patterns for conditions

Equivalent Functionality Flowchart Pattern

Two or more conditions,
multiline form:

(The use of different logical
operators in this form is not
allowed. Use subconditions
instead.)

[condition1 ...
&& condition2 ...
&& condition3]
[condition1 ...
|| condition2 ...
|| condition3]

Conditions with subconditions:

(The use of different
logical operators to connect
subconditions is not allowed.
The use of brackets is
mandatory.)

[(condition1a
|| condition1b) ...
&& (condition2a
|| condition2b) ...
&& (condition3)]
[(condition1a
&& condition1b) ...
|| (condition2a
&& condition2b) ...
|| (condition3)]

7-55

db_0148: Flowchart patterns for conditions

Equivalent Functionality Flowchart Pattern

Conditions that are visually
separated:

(This form may be combined
with the preceding patterns.)

[condition1
&& condition2]
[condition1
|| condition2]

Rationale • Readability

Last
Changed

V2.2

Model
Advisor
Check

Not applicable

7-56

db_0149: Flowchart patterns for condition actions

ID: Title db_0149: Flowchart patterns for condition actions

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites None

Description You should use the following patterns for condition actions within
Stateflow Flowcharts:

7-57

db_0149: Flowchart patterns for condition actions

Equivalent Functionality Flowchart Pattern

One condition action:

action;

Two or more condition actions, multiline
form:

(Two or more condition actions in one line
are not allowed.)

action1; ...
action2; ...
action3; ...

Condition actions, that are visually
separated:

(This form may be combined with the
preceding patterns.)

action1a;
action1b;
action2;
action3;

7-58

db_0149: Flowchart patterns for condition actions

Rationale • Readability

Last
Changed

V2.2

Model
Advisor
Check

Not applicable

7-59

db_0134: Flowchart patterns for If constructs

ID: Title db_0134: Flowchart patterns for If constructs

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites db_0148: Flowchart patterns for conditions

db_0149: Flowchart patterns for condition actions

Description Use the following patterns for If constructs within Stateflow Flowcharts:

Equivalent Functionality Flowchart Pattern

if then

if (condition){ action;
}

7-60

db_0134: Flowchart patterns for If constructs

Equivalent Functionality Flowchart Pattern

if then else

if (condition){ action1;
}
else {

action2;
}

if then else if

if (condition1){ action1;
}
else if (condition2) { action2;
}
else if (condition3){
__action3;
}
else {

action4;
}

7-61

db_0134: Flowchart patterns for If constructs

Equivalent Functionality Flowchart Pattern

Cascade of if then

if (condition1){ action1;
if (condition2){ action2;

if (condition3){ action3;
}

}
}

Rationale • Readability

• Verification and Validation

• Workflow

• Code Generation

• Simulation

Last
Changed

V1.0

Model
Advisor
Check

Not applicable

7-62

db_0159: Flowchart patterns for case constructs

ID: Title db_0159: Flowchart patterns for case constructs

Priority Strongly recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites db_0148: Flowchart patterns for conditions

db_0149: Flowchart patterns for condition actions

7-63

db_0159: Flowchart patterns for case constructs

Description Use the following patterns must be used for case constructs within
Stateflow Flowcharts:

Equivalent Functionality Flowchart Pattern

case with exclusive selection

selection = ...;
switch (selection)
{
case 1:

action1;
break;
case 2:

action2;
break;
case 3:

action3;
break;
default:

action4;
}

7-64

db_0159: Flowchart patterns for case constructs

Equivalent Functionality Flowchart Pattern

case with exclusive conditions

c1 = condition1;
c2 = condition2;
c3 = condition3;
if (c1 && !c2 && !c3)
{
action1;
}
elseif (!c1 && c2 && !c3)
{
action2;
}
elseif (!c1 && !c2 && c3)
{
action3;
}
else
{
action4;
}

Rationale • Readability

Last
Changed

V1.0

Model
Advisor
Check

Not applicable

7-65

db_0135: Flowchart patterns for loop constructs

ID: Title db_0135: Flowchart patterns for loop constructs

Priority Recommended

Scope MAAB

MATLAB®

Versions
All

Prerequisites db_0148: Flowchart patterns for conditions

db_0149: Flowchart patterns for condition actions

7-66

db_0135: Flowchart patterns for loop constructs

Description Use the following patterns to create Loops within Stateflow Flowcharts:

Equivalent Functionality Flowchart Pattern

for loop

for (index=0;
index<number_of_loops;
index++)
{
action;
}

while loop

while (condition)
{
action;
}

do while loop

do
{
action;
}
while (condition);

7-67

db_0135: Flowchart patterns for loop constructs

Rationale • Readability

Last
Changed

V1.0

Model
Advisor
Check

Not applicable

7-68

db_0135: Flowchart patterns for loop constructs

State Chart Architecture
• na_0038: Levels in Stateflow charts

• na_0039: Use of Simulink in Stateflow charts

• na_0040: Number of states per container

• na_0041: Selection of function type

• na_0042: Location of Simulink functions

7-69

na_0038: Levels in Stateflow charts

ID: Title na_0038: Levels in Stateflow charts

Priority Recommended

Scope NA-MAAB

MATLAB®

Versions
All

Description The number of nested States should be limited, typically 3 per level. If
additional levels are required, use sub-charts.

Incorrect: Level_4_a and Level_4_b are nested more than 3 deep

Correct: The 4 levels are encapsulated inside a subchart

7-70

na_0038: Levels in Stateflow charts

Rationale • Readability

Last
Changed

V3.0

Model
Advisor
Check

Not applicable

7-71

na_0039: Use of Simulink in Stateflow charts

ID: Title na_0039: Use of Simulink in Stateflow charts

Priority Recommended

Scope NA-MAAB

MATLAB®

Versions
R2010b and later

Description Do not nest Stateflow charts inside Simulink functions that are included
in Stateflow charts.

Incorrect

Rationale • Readability

• Verification and Validation

• Code Generation

Last
Changed

V3.0

Model
Advisor
Check

Not applicable

7-72

na_0040: Number of states per container

ID: Title na_0040: Number of states per container

Priority Recommended

Scope NA-MAAB

MATLAB®

Versions
All

Description The number of viewable States per container should be limited,
typically to 6 to 10 states per container. The number is based on the
visible states in the diagram.

Correct

Note A container is either a State, Box or root level chart.

7-73

na_0040: Number of states per container

Rationale • Readability

• Verification and Validation

• Code Generation

Last
Changed

V3.0

Model
Advisor
Check

Not applicable

7-74

na_0041: Selection of function type

ID: Title na_0041: Selection of function type

Priority Recommended

Scope NA-MAAB

MATLAB®

Versions
All

Description Stateflow supports three types of functions: Graphical, MATLAB and
Simulink. The appropriate function depends on the type of operations
required:

• Simulink

- Transfer functions

- Integrators

- Table look-ups

• MATLAB

- Complex equations

- If / then / else logic

• Graphical functions

- If / then / else logic

Rationale • Workflow

• Code Generation

Last
Changed

V3.0

7-75

na_0041: Selection of function type

Model
Advisor
Check

Not applicable

7-76

na_0042: Location of Simulink functions

ID: Title na_0042: Location of Simulink functions

Priority Recommended

Scope NA-MAAB

MATLAB®

Versions
All

Prerequisites na_0039: Use of Simulink in Stateflow charts

Description When deciding whether to embed Simulink functions inside a Stateflow
chart, the following conditions make embedding the preferred option.
If the Simulink functions

• Use only local Chart data.

OR

• Use a mixture of local Chart data and inputs from Simulink. OR

OR

• Are called from multiple locations within the chart.

OR

• Are not called every time step.

Rationale • Readability

• Workflow

Last
Changed

V3.0

Model
Advisor
Check

Not applicable

7-77

na_0042: Location of Simulink functions

7-78

8

Enumerated Data

8 Enumerated Data

General Guidelines
• na_0033: Enumerated Types Usage

• na_0031: Definition of default enumerated value

8-2

na_0033: Enumerated Types Usage

ID: Title na_0033: Enumerated Types Usage

Priority Recommended

Scope NA-MAAB

MATLAB®

Versions
R2010b and later

Prerequisites None

Description An enumerated data type should be used when a signal or parameter
can take on a finite set of integer values, and those values are associated
with a set of named items. The names, called literals, have meaning
in the context of the algorithm or the domain in which it operates.
Typically, these literals represent an operating mode, signal status,
build variation, or some other discrete property that the quantity
represented by the variable can take on. A typical automotive example
of this is the modes of a transmission: Park, Reverse Neutral, Drive,
Low.

Rationale • Readability

• Verification and Validation

• Workflow

• Code Generation

• Simulation

See Also • dm_0002: Enumerated type usage

Last
Changed

V3.0

8-3

na_0031: Definition of default enumerated value

ID: Title na_0031: Definition of default enumerated value

Priority Recommended

Scope NA-MAAB

MATLAB®

Versions
R2010b and later

Prerequisites None

Description The default value of the enumeration should always be explicitly
defined for the enumerated type.

Rationale • Readability

• Verification and Validation

• Code Generation

Last
Changed

V3.0

8-4

9

MATLAB Functions

• “MATLAB Function Appearance” on page 9-2

• “MATLAB Function Data and Operations” on page 9-7

• “MATLAB Function Patterns” on page 9-11

• “MATLAB Function Usage” on page 9-14

9 MATLAB® Functions

MATLAB Function Appearance
• na_0018: Number of nested if/else and case statement

• na_0019: Restricted Variable Names

• na_0025: MATLAB Function Header

9-2

na_0018: Number of nested if/else and case statement

ID: Title na_0018: Number of nested if/else and case statement

Priority Strongly recommended

Scope NA-MAAB

MATLAB®

Versions
All

Prerequisites None

Description The number of levels of nested if / else and case statements should be
limited, typically to 3 levels.

Rationale • Readability

• Code Generation

See Also • jr_0002: Number of nested if/else and case statement blocks

Last
Changed

V3.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > MATLAB
Functions > “Check MATLAB Function block metrics”

9-3

na_0019: Restricted Variable Names

ID: Title na_0019: Restricted Variable Names

Priority Mandatory

Scope NA-MAAB

MATLAB®

Versions
All

Prerequisites None

Description To improve the readability of the MATLAB code, avoid using reserved C
variable names. For example, avoid using const, const, TRUE, FALSE,
infinity, nil, double, single, or enum.

Avoid using variable names that conflict with MATLAB Functions, for
example conv.

Note Reserved keywords are defined in the Simulink Coder™ documentation.

Rationale • Readability

• Verification and Validation

See Also • Derived from jh_0042: Required software

Last
Changed

V3.0

9-4

na_0025: MATLAB Function Header

ID: Title na_0025: MATLAB Function Header

Priority Strongly recommended

Scope NA-MAAB

MATLAB®

Versions
All

Prerequisites None

Description MATLAB Functions must have a descriptive header. Header content
may include, but is not limited to, the following types of information:

• Function name

• Description of function

• Assumptions and limitations

• Description of changes from previous versions

• Lists of inputs and outputs

Example:

%% Function Name: NA_0025_Example_Header
%
% Assumptions: None
%
% Inputs:
% List of input arguments
%
% Outputs:
% List of output arguments

%
% $Date: August 27, 2012

9-5

na_0025: MATLAB Function Header

% __

Rationale • Readability

• Verification and Validation

• Workflow

• Code Generation

See Also • jh_0073: eML Header version

Last
Changed

V3.0

9-6

na_0025: MATLAB Function Header

MATLAB Function Data and Operations
• na_0034: MATLAB Function block input/output settings

• na_0024: Global Variables

9-7

na_0034: MATLAB Function block input/output settings

ID: Title na_0034:MATLAB Function block input/output settings

Priority Strongly recommended

Scope NA-MAAB

MATLAB®

Versions
All

Prerequisites None

Description All inputs and outputs to MATLAB function blocks should have the data
type explicitly defined, either in the Model Explorer or at the start of the
function. This provides a more rigorous data type check for MATLAB
Function blocks and prevents the need for using assert statements.

Rationale • Readability

• Verification and Validation

• Workflow

• Code Generation

Last
Changed

V3.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > MATLAB
Functions > “Check input and output settings of MATLAB
Function blocks”

9-8

na_0024: Global Variables

ID: Title na_0024: Global Variables

Priority Strongly recommended

Scope NA-MAAB

MATLAB®

Versions
All

Prerequisites None

Description The preferred method for accessing common data is by signal lines.
However, if required, Data Store Memory can be used to emulate global
memory.

Example:

In this example, the same Data Store Memory (ErrorFlag_DataStore)
is written to two separate MATLAB Functions.

function EngineFaultEvaluation(EngineData)
%# codegen
global ErrorFlag_DataStore
if (EngineData.RPM_HIGH)
ErrorFlag_DataStore = bitor(ErrorFlag_DataStore, HIGHRPMFAULT);

end

if (EngineData.RPM_LOW)
ErrorFlag_DataStore = bitor(ErrorFlag_DataStore, LOWRPMFAULT);

end
end

function WheelFaultEvaluation(WheelData)
%# codegen
global ErrorFlag_DataStore
if (WheelData.SlipHigh)

9-9

na_0024: Global Variables

ErrorFlag_DataStore = bitor(ErrorFlag_DataStore, WHEELSLIP);
end

if (WheelData.SlipHigh)
ErrorFlag_DataStore = bitor(ErrorFlag_DataStore, LOWRPMFAULT);

end
end

Rationale • Readability

• Verification and Validation

• Code Generation

• Simulation

See Also • ek_0003: Global Variables

Last
Changed

V3.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Naming
Conventions > “Check MATLAB code for global variables”

9-10

na_0024: Global Variables

MATLAB Function Patterns
• na_0022: Recommended patterns for Switch/Case statements

9-11

na_0022: Recommended patterns for Switch/Case
statements

ID: Title na_0022: Recommended patterns for Switch/Case statements

Priority Mandatory

Scope NA-MAAB

MATLAB®

Versions
All

Prerequisites None

Description Switch / Case statements must use constant values for the Case
arguments. Input variables cannot be used in the Case arguments.

Correct:

function outVar = NA_0022_Pass(SwitchVar)
%# codegen
switch SwitchVar
case Case_1_Parameter % Parameter
outVar = 0;

case NA_0022.Case % Enumerated Data type
outVar = 1;

case 3 % Hard Code Value
outVar = 2;

otherwise
outVar = 10;

end
end

Incorrect:

function outVar = NA_0022_Fail(Case_1, Case_2, Case_3, SwitchVar)
%# codegen
switch SwitchVar
case Case_1

9-12

na_0022: Recommended patterns for Switch/Case
statements

outVar = 1;
case Case_2
outVar = 2;

case Case_3
outVar = 3;

otherwise
outVar = 10;

end
end

Rationale • Verification and Validation

• Code Generation

• Simulation

See Also • jh_0026: Switch / Case statement

Last
Changed

V3.0

9-13

na_0022: Recommended patterns for Switch/Case
statements

MATLAB Function Usage
• na_0016: Source lines of MATLAB Functions

• na_0017: Number of called function levels

• na_0021: Strings

9-14

na_0016: Source lines of MATLAB Functions

ID: Title na_0016: Source lines of MATLAB Functions

Priority Mandatory

Scope NA-MAAB

MATLAB®

Versions
See description

Prerequisites None

Description The length of MATLAB functions should be limited, with a
recommended limit of 60 lines of code. This restriction applies to
MATLAB Functions that reside in the Simulink block diagram and
external MATLAB files with a .m extension.

If sub-functions are used, they may use additional lines of code. Also
limit the length of sub-functions to 60 lines of code.

Rationale • Readability

• Verification and Validation

• Workflow

• Code Generation

See Also • IM_0008: Source lines of eML

Last
Changed

V3.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > MATLAB
Functions > “Check MATLAB Function block metrics”

9-15

na_0017: Number of called function levels

ID: Title na_0017: Number of called function levels

Priority Mandatory

Scope NA-MAAB

MATLAB®

Versions
All

Prerequisites None

Description The number of levels of sub-functions should be limited, typically to 3
levels. MATLAB Function blocks that reside at the Simulink block
diagram level count as the first level, unless it is simply a wrapper for
an external MATLAB file with a .m extension.

This includes functions that are defined within the MATLAB block
and those in the separate .m files.

Note Standard utility functions, such as built-in functions like sqrt or log,
are not include in the number of levels. Likewise, commonly used
custom utility functions can be excluded from the number of levels.

Rationale • Readability

• Verification and Validation

Last
Changed

V3.0

9-16

na_0021: Strings

ID: Title na_0021: Strings

Priority Strongly recommended

Scope NA-MAAB

MATLAB®

Versions
All

Prerequisites None

Description The use of strings is not recommended. MATLAB Functions store
strings as character arrays. The arrays cannot be re-sized to
accommodate a string value of different length, due to lack of dynamic
memory allocation. Strings are not a supported data type in Simulink,
so MATLAB Function blocks cannot pass the string data outside the
block.

For example, the following code will produce an error:

name='rate_error'; %this creates a 1 x 10 character array
name = 'x_rate_error'; %this causes an error because the array
size is now 1 x 12, not 1 x 10.

Note If the string is being used for switch / case behavior, consider using
enumerated data types

Rationale • Verification and Validation

• Workflow

• Code Generation

See Also • jh_0024: Strings

Last
Changed

V3.0

9-17

na_0021: Strings

9-18

A

Recommendations for
Automation Tools

These recommendations are for companies who develop tools that automate
checking of the style guidelines. The MathWorks Automotive Advisory Board
(MAAB) developed these recommendations for tool vendors who create tools
developed with MathWorks tools that check models against these guidelines.
To provide maximum information to potential users of the tools, the MAAB
strongly recommends that tool vendors provide a compliance matrix that
is easily accessible while the tool is running. This information should be
available without a need to purchase the tool.

The compliance matrix should include the following information:

• Version of the guidelines that are checked – shall include the complete
title, as found on the title page of this document.

Include the MAAB Style Guidelines Title and Version document number.

• Table consisting of the following information for each guideline:

- Guideline ID

- Guideline title

- Level of compliance

- Detail

The guideline ID and title shall be exactly as included in this document. The
level of compliance shall be one of the following:

A Recommendations for Automation Tools

Correction The tool checks and automatically or semiautomatically
corrects the noncompliance.

Check The tool checks and flags noncompliance. It is the developer’s
responsibility to make the correction.

Partial The tool checks part of the guideline. The detail section
should clearly identify what is and what is not checked.

None The tool does not check the guideline. The MAAB
recommends that the vendor provide a recommendation of
how to manually check guidelines that the tool does not
check.

A-2

B

Guideline Writing

Guidelines with the following characteristics are easier to understand and
use. At a minimum, when writing a new guideline, it should be

Understandable and
unambiguous

A guideline’s description should be precise,
clearly worded, concise, and should define a
characteristic of a model (or part of a model)
that a checking tool can evaluate. Use the words
"must," "shall," "should," and "may" carefully;
they have distinct meanings that are important
for model developers and model checkers (human
and automated). It is helpful to the reader if the
guideline author describes how the conforming
state can be reached (for example, by selecting
particular options or clicking a certain button).
Examples, counterexamples, pictures, diagrams,
and screen shots are also helpful and are
encouraged.

Minimize the allowable exceptions to a guideline;
exceptions blur a guideline and make it harder
to apply. If a guideline has many allowable
exceptions, you may be trying to cover too many
characteristics with one guideline. (See Minimal,
following, for some solutions.)

Easy to find

Minimal A guideline should address only one model
characteristic at a time. Guidelines should
be atomic. For example, instead of writing a
big guideline that addresses error prevention
and readability at the same time, make

B Guideline Writing

two guidelines, one that addresses error
prevention and one that addresses readability. If
appropriate, make one guideline a prerequisite
of the other. Also, big guidelines are more likely
than small guidelines to require compromises
for wide acceptance. Big guidelines may end up
being weaker, less specific, and less beneficial.
Small, focused guidelines are less likely to
change due to compromise and easier adoption.

B-2

C

Flowchart Reference

Use the patterns that appear in this appendix for if-then-else-if constructs
within Stateflow Flowcharts.

C Flowchart Reference

Straight Line Flow Chart Pattern Curved Line Flow Chart Pattern

if then

if then else

C-2

Flowchart Reference

Straight Line Flow Chart Pattern Curved Line Flow Chart Pattern

if then else if

Cascade of if then

C-3

C Flowchart Reference

The following patterns are used for case constructs within Stateflow
Flowcharts:

Straight Line Flow Chart Pattern Curved Line Flow Chart Pattern

case with exclusive selection

C-4

Flowchart Reference

Straight Line Flow Chart Pattern Curved Line Flow Chart Pattern

case with exclusive conditions

C-5

C Flowchart Reference

The following patterns are used for for loops within Stateflow Flowcharts:

Straight Line Flow Chart Pattern Curved Line Flow Chart Pattern

for loop

Straight Line Flow Chart Pattern Curved Line Flow Chart Pattern

while loop

C-6

Flowchart Reference

Straight Line Flow Chart Pattern Curved Line Flow Chart Pattern

do while loop

C-7

C Flowchart Reference

The following patterns are alternately used for If-then-else-if constructs
within Stateflow Flowcharts:

Straight Line Flow Chart Pattern Alternate Straight Line Flow Chart Pattern

if then else if

C-8

Flowchart Reference

Straight Line Flow Chart Pattern Alternate Straight Line Flow Chart Pattern

Cascade of if then

C-9

C Flowchart Reference

C-10

D

Background Information on
Basic Blocks and Signals

• “Basic Blocks” on page D-2

• “Signals and Signal Labels” on page D-3

D Background Information on Basic Blocks and Signals

Basic Blocks
This document uses the term basic blocks to refer to blocks built into the
“Block Libraries”. The following table lists some examples of basic blocks.

Basic Blocks

Block Example

Inport

Constant

Gain

Sum

Switch

Saturation

Abs

D-2

Signals and Signal Labels

Signals and Signal Labels
Signals may be scalars, vectors, or busses. They may carry data or control
flows.

You use signal labels to make model functionality more understandable from
the Simulink diagram. You can also use them to control the variable names
used in simulation and code generation. Enter signal names only once (at
the point of signal origination). Often, you may want to also display the
signal name elsewhere in the model. In these cases, the signal name should
be inherited until the signal is functionally transformed. (Passing a signal
through an integrator is functionally transforming. Passing a signal through
an Inport into a nested subsystem is not.) Once a named signal is functionally
transformed, associate a new name with it.

Unless explicitly stated otherwise, the guidelines in “Signals” on page 6-33
apply to all types of signals.

For more information about the representation of signals in Simulink models,
see “Signal Basics” in the Simulink documentation.

D-3

D Background Information on Basic Blocks and Signals

D-4

Glossary

MAAB Glossary

Actions
Actions are part of Stateflow diagram execution. The action can be
executed as part of a transition from one state to another, or depending
on the activity status of a state. Transitions can have condition actions
and transition actions. For example,

States can have entry, during, exit, and, on event_name actions. For
example,

If you enter the name and backslash followed directly by an action or
actions (without the entry keyword), the actions are interpreted as entry
actions. This shorthand is useful if you are specifying only entry actions.

The action language defines the categories of actions you can specify
and their associated notations. An action can be a function call, an
event to be broadcast, a variable to be assigned a value, and so on.

Glossary-1

MAAB Glossary

Action Language
Sometimes you want actions to take place as part of Stateflow diagram
execution. The action can be executed as part of a transition from one
state to another, or it can depend on the activity status of a state.
Transitions can have condition actions and transition actions. States
can have entry, during, exit, and, on event_name actions. An action
can be a function call, an event to be broadcast, a variable to be assigned
a value, etc.

The action language defines the categories of actions you can specify and
their associated notations. Violations of the action language notation
are flagged as errors by the parser. This section describes the action
language notation rules.

Chart Instance
A chart instance is a link from a Stateflow model to a chart stored
in a Simulink library. A chart in a library can have many chart
instances. Updating the chart in the library automatically updates all
the instances of that chart.

Condition
A condition is a Boolean expression to specify that a transition occur,
given that the specified expression is true. For example,

The action language defines the notation to define conditions associated
with transitions.

Connective Junction
Connective junctions are decision points in the system. A connective
junction is a graphical object that simplifies Stateflow diagram

Glossary-2

MAAB Glossary

representations and facilitates generation of efficient code. Connective
junctions provide alternative ways to represent the system behavior you
want. This example shows how connective junctions (displayed as small
circles) are used to represent the flow of an if code structure.

Or the equivalent squared style

Glossary-3

MAAB Glossary

Name Button Icon Description

Connective
junction

One use of a Connective junction is to
handle situations where transitions
out of one state into two or more states
are taken based on the same event but
guarded by different conditions.

Data
Data objects store numerical values for reference in the Stateflow
diagram.

Defining Data
A state machine can store and retrieve data that resides internally in
its own workspace. It can also access data that resides externally in the
Simulink model or application that embeds the state machine. When
creating a Stateflow model, you must define any internal or external
data referenced by the state machine’s actions.

Data Dictionary
The data dictionary is a database where Stateflow diagram information
is stored. When you create Stateflow diagram objects, the information
about those objects is stored in the data dictionary, once you save the
Stateflow diagram.

Decomposition
A state has decomposition when it consists of one or more substates.
A Stateflow diagram that contains at least one state also has
decomposition. Representing hierarchy necessitates some rules around
how states can be grouped in the hierarchy. A superstate has either
parallel (AND) or exclusive (OR) decomposition. All substates at a
particular level in the hierarchy must be of the same decomposition.

Parallel (AND) State Decomposition. Parallel (AND) state
decomposition is indicated when states have dashed borders. This
representation is appropriate if all states at that same level in the
hierarchy are active at the same time. The activity within parallel
states is essentially independent.

Glossary-4

MAAB Glossary

Exclusive (OR) State Decomposition. Exclusive (OR) state
decomposition is represented by states with solid borders. Exclusive
(OR) decomposition is used to describe system modes that are mutually
exclusive. Only one state, at the same level in the hierarchy, can be
active at a time.

Default Transition
Default transitions are primarily used to specify which exclusive (OR)
state is to be entered when there is ambiguity among two or more
neighboring exclusive (OR) states. For example, default transitions
specify which substate of a superstate with exclusive (OR) decomposition
the system enters by default in the absence of any other information.
Default transitions are also used to specify that a junction should be
entered by default. A default transition is represented by selecting the
default transition object from the toolbar and then dropping it to attach
to a destination object. The default transition object is a transition with
a destination but no source object.

Name Button Icon Description

Default
transition

Use a Default transition to indicate,
when entering this level in the
hierarchy, which state becomes active
by default.

Events
Events drive the Stateflow diagram execution. Define all events that
affect the Stateflow diagram. The occurrence of an event causes the
status of the states in the Stateflow diagram to be evaluated. The
broadcast of an event can trigger a transition to occur and/or can trigger
an action to be executed. Events are broadcast in a top-down manner
starting from the event’s parent in the hierarchy.

Finite State Machine
A finite state machine (FSM) is a representation of an event-driven
system. FSMs are also used to describe reactive systems. In an
event-driven or reactive system, the system transitions from one mode
or state, to another prescribed mode or state, provided that the condition
defining the change is true.

Glossary-5

MAAB Glossary

Flow Graph
A flow graph is the set of Flowcharts that start from a transition
segment that, in turn, starts from a state or a default transition
segment.

Flowchart (also known as Flow Path)
A Flowchart is an ordered sequence of transition segments and junctions
where each succeeding segment starts on the junction that terminated
the previous segment.

Flow Subgraph
A flow subgraph is the set of Flowcharts that start on the same
transition segment.

Hierarchy
Using hierarchy you can organize complex systems by placing states
within other higher-level states. A hierarchical design usually reduces
the number of transitions and produces neat, more manageable
diagrams.

History Junction
A History Junction specifies the destination substate of a transition
based on historical information. If a superstate has a History Junction,
the transition to the destination substate is defined to be the substate
that was most recently visited. The History Junction applies to the level
of the hierarchy in which it appears.

Name Button Icon Description

History
Junction

Use a History Junction to indicate, when
entering this level in the hierarchy, that
the last state that was active becomes
the next state to be active.

Inner Transitions
An inner transition is a transition that does not exit the source state.
Inner transitions are most powerful when defined for superstates with
XOR decomposition. Use of inner transitions can greatly simplify a
Stateflow diagram.

Glossary-6

MAAB Glossary

Library Link
A library link is a link to a chart that is stored in a library model in
a Simulink block library.

Library Model
A Stateflow library model is a Stateflow model that is stored in a
Simulink library. You can include charts from a library in your model
by copying them. When you copy a chart from a library into your model,
Stateflow does not physically include the chart in your model. Instead,
it creates a link to the library chart. You can create multiple links to a
single chart. Each link is called a chart instance. When you include a
chart from a library in your model, you also include its state machine.
A Stateflow model that includes links to library charts has multiple
state machines. When Stateflow simulates a model that includes charts
from a library model, it includes all charts from the library model even
if there are links to only some of its models. However, when Stateflow
generates a stand-alone or Simulink Coder target, it includes only those
charts for which there are links. A model that includes links to a library
model can be simulated only if all charts in the library model are free of
parse and compile errors.

Machine
A machine is the collection of all Stateflow blocks defined by a Simulink
model exclusive of chart instances (library links). If a model includes
any library links, it also includes the state machines defined by the
models from which the links originate.

Nonvirtual Block
Blocks that perform a calculation, such as a Gain block.

Notation
A notation defines a set of objects and the rules that govern the
relationships between those objects. Stateflow notation provides a
common language to communicate the design information conveyed by a
Stateflow diagram. Stateflow notation consists of:

• A set of graphical objects

• A set of nongraphical text-based objects

• Defined relationships between those objects

Glossary-7

MAAB Glossary

Parallelism
A system with parallelism can have two or more states that can be
active at the same time. The activity of parallel states is independent.
Parallelism is represented with a parallel (AND) state decomposition.

Real-Time System
A system that uses actual hardware to implement algorithms, for
example, digital signal processing or control applications.

Simulink Coder
Simulink Coder software includes an automatic C language code
generator for Simulink. It produces C code directly from Simulink block
diagram models and automatically builds programs that can be run in
real-time in a variety of environments.

Simulink Coder Target
An executable built from code generated by the Simulink Coder product.

S-function
A customized Simulink block written in C or MATLAB-code. S-functions
written in C can be inlined in the Simulink Coder software. When using
Simulink together with Stateflow for simulation, Stateflow generates
an S-function (MEX-file) for each Stateflow machine to support model
simulation. This generated code is a simulation target and is called
the S-Fun target within Stateflow.

Signal propagation
Process used by Simulink to determine attributes of signals and blocks,
such as data types, labels, sample time, dimensionality, and so on, that
are determined by connectivity.

Signal source
The signal source is the block of origin for a signal. The signal source
may or may not be the true source.

Simulink
Simulink is a software package for modeling, simulating, and analyzing
dynamic systems. It supports linear and nonlinear systems, modeled
in continuous time, sampled time, or a hybrid of the two. Systems can

Glossary-8

MAAB Glossary

also be multirate, that is, have different parts that are sampled or
updated at different rates.

Simulink allows you to represent systems as block diagrams that you
build using your mouse to connect blocks and your keyboard to edit
block parameters. Stateflow is part of this environment. The Stateflow
block is a masked Simulink model. Stateflow builds an S-function that
corresponds to each Stateflow machine. This S-function is the agent
Simulink interacts with for simulation and analysis.

The control behavior that Stateflow models complements the algorithmic
behavior modeled in Simulink block diagrams. By incorporating
Stateflow diagrams into Simulink models, you can add event-driven
behavior to Simulink simulations. You create models that represent
both data and control flow by combining Stateflow blocks with the
standard Simulink blockset. These combined models are simulated
using Simulink.

State
A state describes a mode of a reactive system. A reactive system has
many possible states. States in a Stateflow diagram represent these
modes. The activity or inactivity of the states dynamically changes
based on events and conditions.

Every state has hierarchy. In a Stateflow diagram consisting of a
single state, that state’s parent is the Stateflow diagram itself. A state
also has history that applies to its level of hierarchy in the Stateflow
diagram. States can have actions that are executed in a sequence based
upon action type. The action types are: entry, during, exit, or on
event_name actions.

Name Button Icon Description

State Use a state to depict a mode of the
system.

Stateflow Block
The Stateflow block is a masked Simulink model and is equivalent to an
empty, untitled Stateflow diagram. Use the Stateflow block to include a
Stateflow diagram in a Simulink model.

Glossary-9

MAAB Glossary

The control behavior that Stateflow models complements the
algorithmic behavior modeled in Simulink block diagrams. By
incorporating Stateflow blocks into Simulink models, you can add
complex event-driven behavior to Simulink simulations. You create
models that represent both data and control flow by combining Stateflow
blocks with the standard Simulink and toolbox block libraries. These
combined models are simulated using Simulink.

Stateflow Debugger
Use the Stateflow Debugger to debug and animate your Stateflow
diagrams. Each state in the Stateflow diagram simulation is evaluated
for overall code coverage. This coverage analysis is done automatically
when the target is compiled and built with the debug options. The
Debugger can also be used to perform dynamic checking. The Debugger
operates on the Stateflow machine.

Stateflow Diagram
Using Stateflow, you create Stateflow diagrams. A Stateflow diagram is
also a graphical representation of a finite state machine where states
and transitions form the basic building blocks of the system.

Stateflow Explorer
Use the Stateflow Explorer to add, remove, and modify data, event,
and target objects.

Stateflow Finder
Use the Finder to display a list of objects based on search criteria that
you specify. You can directly access the properties dialog box of any
object in the search output display by clicking on that object.

Substate
A state is a substate if it is contained by a superstate.

Glossary-10

MAAB Glossary

Superstate
A state is a superstate if it contains other states, called substates.

Target
An executable program built from code generated by Stateflow or
Simulink Coder software.

Top-down Processing
Top-down processing refers to the way in which Stateflow processes
states. In particular, Stateflow processes superstates before states.
Stateflow processes a state only if its superstate is activated first.

Transition
A transition describes the circumstances under which the system moves
from one state to another. Either end of a transition can be attached to
a source and a destination object. The source is where the transition
begins and the destination is where the transition ends. It is often the
occurrence of some event that causes a transition to take place.

Transition Path
A transition path is a Flowchart that starts and ends on a state.

Glossary-11

MAAB Glossary

Transition Segment
A transition segment is a single directed edge on a Stateflow diagram.
Transition segments are sometimes loosely referred to as transitions.

Tunable parameters
A tunable parameter is a parameter that can be adjusted in the model
and in generated code.

True Source
The true source is the block which creates a signal. The true source is
different from the signal source because the signal source may be a
simple routing block such as a Demux block.

Virtual Block
When creating models, be aware that Simulink blocks fall into two
basic categories: nonvirtual and virtual blocks. Nonvirtual blocks play
an active role in the simulation of a system. If you add or remove a
nonvirtual block, you change the model’s behavior. Virtual blocks, by
contrast, play no active role in the simulation. They help to organize
a model graphically. Some Simulink blocks can be virtual in some
circumstances and nonvirtual in others. Such blocks are called
conditionally virtual blocks. The following table lists Simulinks virtual
and conditionally virtual blocks.

Block Name Condition Under Which Block Is Virtual

Bus Selector Virtual if input bus is virtual

Demux Always virtual

Enable Virtual unless connected directly to an Outport block

From Always virtual

Goto Always virtual

Goto Tag
Visibility

Always virtual

Ground Always virtual

Inport Virtual when the block resides within any subsystem
block (conditional or not), and does not reside in the
root (top-level) Simulink window.

Glossary-12

MAAB Glossary

Block Name Condition Under Which Block Is Virtual

Mux Always virtual

Outport Virtual when the block resides within any subsystem
block (conditional or not), and does not reside in the
root (top-level) Simulink window.

Selector Virtual except in matrix mode

Signal
Specification

Always virtual

Subsystem Virtual unless the block is conditionally executed
and/or the block’s Treat as Atomic Unit option is
selected.

Terminator Always virtual

Trigger Virtual if the Outport port is not present.

Virtual Scrollbar
Using a virtual scrollbar, you can set a value by scrolling through a list
of choices. When you move the mouse over a menu item with a virtual
scrollbar, the cursor changes to a line with a double arrowhead. Virtual
scrollbars are either vertical or horizontal. The direction is indicated by
the positioning of the arrowheads. Drag the mouse either horizontally
or vertically to change the value.

Glossary-13

	toc
	Introduction
	Presentation of Guidelines Hosted by MathWorks
	Motivation
	Notes on Version 3.0
	Guideline Template
	Guideline ID
	Guideline Title
	Priority
	Scope
	MATLAB Versions
	Prerequisites
	Description
	Rationale
	Last Change
	Model Advisor Check

	Document Usage
	Model Advisor Checks for MAAB Guidelines

	Software Environment
	General Guidelines

	Naming Conventions
	General Guidelines
	Model Content

	Model Architecture
	Simulink and Stateflow Partitioning
	Subsystem Hierarchies
	J-MAAB Model Architecture Decomposition

	Model Configuration Options
	Model Configuration Options

	Simulink
	Diagram Appearance
	Signals
	Block Usage
	Block Parameters
	Simulink Patterns

	Stateflow
	Chart Appearance
	Stateflow Data and Operations
	Events
	Statechart Patterns
	Flowchart Patterns
	State Chart Architecture

	Enumerated Data
	General Guidelines

	MATLAB Functions
	MATLAB Function Appearance
	MATLAB Function Data and Operations
	MATLAB Function Patterns
	MATLAB Function Usage

	Recommendations for Automation Tools
	Guideline Writing
	Flowchart Reference
	Background Information on Basic Blocks and Signals
	Basic Blocks
	Signals and Signal Labels

	MAAB Glossary

	tables
	Blocks that You Can Place at any Model Level
	Basic Blocks

